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APPLICATION GUIDE TO NEUTRON MULTIPLICITY COUNTING

by

N. Ensslin, W. C. Harker, M. S. Krick, D. G. Langner,
M. M. Pickrell, and J. E. Stewart

Abstract

This document is intended to serve as a comprehensive applications guide to passive
neutron multiplicity counting, a new nondestructive assay (NDA) technique developed over the
past ten years.  The document describes the principles of multiplicity counter design, electronics,
and mathematics.  Existing counters in Department of Energy (DOE) facilities are surveyed, and
their operating requirements and procedures and defined.  Current applications to plutonium
material types found in DOE facilities are described, and estimates of the expected assay precision
and bias are given.  Lastly, guidelines for multiplicity counter selection and procurement are
summarized.  The document also includes a detailed collection of references on passive neutron
coincidence and multiplicity publications over the last ten to fifteen years.

__________________________



2

I . Introduction

A . Purpose of the Application Guide

During the past ten years, a new nondestructive assay (NDA) technique for plutonium,
called passive neutron multiplicity counting, has been developed as an extension of neutron
coincidence counting.  The new technique has led to the design and fabrication of a new generation
of instruments, neutron multiplicity counters, one of which is pictured in Fig. 1.1.  The
development of new neutron counters has been accompanied by advances in data-processing
electronics, analysis algorithms, and data-collection software.  Development activities have been
funded primarily by the Department of Energy (DOE) Office of Safeguards and Security,
Technology Development Branch.  Altogether, the new technology has led to significantly better
measurement accuracy for plutonium metal, oxide, scrap, and residues.

Fig. 1.1.  Photo of the Plutonium Scrap Multiplicity Counter, used
for accurate assays of cans of plutonium metal, oxide, mixed oxide, or
scrap.

There is extensive and growing literature on neutron multiplicity detector design,
electronics, data analysis algorithms, performance, and applications as documented in the
Reference Section at the end of this guide.  Also, Krick (94) has prepared an Application Note on
the Passive Neutron Multiplicity Counter that provides a brief summary of the new technology.
However, NDA specialists at a number of DOE facilities have requested a comprehensive
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document that pulls together the most important information describing the technique, how it
works, and how it can be applied.  This application guide, sponsored by the DOE Office of
Safeguards and Security, is intended to meet this need.

B . Definition of Neutron Multiplicity Counting

Multiplicity is a word that has, well, a multiplicity of meanings!  Recently this word even
served as the title for a Hollywood movie, in which multiple copies of the leading actor were
cloned.  Our use of the word begins in a similar way, with the fact that the important NDA
signature for plutonium is the process of spontaneous fission, leading to the nearly simultaneous
emission of multiple, indistinguishable neutrons as a byproduct of the fission process.

The number of neutrons emitted in spontaneous fission can vary from zero to six or more.
The process is random, or statistical, in nature, and the distribution of the number of emitted
neutrons is called the neutron multiplicity distribution by the laboratory researchers who have
measured it.  The multiplicity distribution for spontaneous fission in 240Pu is illustrated in Fig. 1.2,
showing that the probability of emitting no neutrons is about 0.066, the probability of emitting one
neutron is about 0.232, the probability of emitting two neutrons is about 0.329, etc.
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Fig. 1.2.  The multiplicity distribution for spontaneous fission in 240Pu.

All passive neutron counting techniques rely on this spontaneous fission process.  Total
neutron counting simply counts the sum of all the emitted neutrons.  Neutron coincidence counting
looks for pairs of neutrons that are close together in time, within the coincidence resolving time or
“gate width” of the electronics package.  However, multiplicity electronics packages are more
complex, and sum up separately the number of 0, 1, 2, 3, 4, 5, 6, 7, etc. multiples of neutrons
within the coincidence resolving time, as described in Part IV of this guide.  Thus they measure a
multiplicity distribution of neutrons that are emitted, then detected, and then counted within the gate
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width.  For this reason, the word multiplicity is specifically associated with the extension of
conventional coincidence counting to the collection of higher-order multiples of neutrons.
However, we also associate the word multiplicity with a special neutron counter design (Part II)
and with the mathematics of the data analysis process (Part V).

In practice, our multiplicity data analysis procedure is not based directly on the observed
multiplicity distribution, but on the moments of the distributions, as defined in Part V of this guide.
In the language of Part V, the first moment of the neutron multiplicity distribution is the “singles,”
or “totals.”  The second moment of the neutron multiplicity distribution is the “doubles” or “reals”
and the third moment is the “triples.”  Neutron multiplicity analysis works with all three of these
moments, whereas conventional coincidence counting only uses the singles and doubles.  Thus,
when we use the word “multiplicity,” we really mean that we will add a third measured parameter,
triple coincidences, to the singles and doubles determined by conventional coincidence counting.

C . Basic Principles of Neutron Multiplicity Counting

Neutron coincidence counting is a fast, NDA technique that extracts quite a bit of useful
qualitative and quantitative information from the neutrons emitted by plutonium.  The coincident
neutrons emitted in spontaneous fission provide a strong signature for plutonium.  Ideally, this
information should provide a unique signature for plutonium, and should also determine the actual
grams of 240Pu-effective in the sample, where this quantity is defined as that mass of 240Pu that
would give the same double coincidence response as that obtained from all the even isotopes in the
actual sample:

240Pueff = 2.52238Pu+240Pu +1.68242Pu      . (1-1)

Then, high-resolution gamma-ray spectroscopy, mass spectroscopy, or other facility information is
used to obtain the isotopic composition of the plutonium, which makes it possible to obtain the
total plutonium mass of the sample from the 240Pu-effective mass:

TotalPu=240
Pueff /(2.52 f2 3 8 + f2 4 0 +1.68 f2 4 2 )      , (1-2)

where f238, f240, and f242 are the fractions of the plutonium isotopes present in the sample.

In practice, the neutron flux emitted by the plutonium sample can be affected by a number
of usually unknown, or incompletely known, sample or detector properties.  The total list of
potentially unknown parameters includes the following:

1. Spontaneous fission rate–the goal of the assay
2. Induced fission, or sample self-multiplication, and its variation across the sample,
3. The (α ,n) reaction rate in the sample,
4. Spatial variation in neutron detection efficiency,
5. Energy spectrum effects on detection efficiency,
6. Neutron capture in the sample, and
7. The neutron die-away time in the detector.

Clearly there are potentially more sample unknowns than conventional coincidence
counting can determine.  Mathematically speaking, we need N measured parameters to solve for N
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unknown sample properties.  And conventional coincidence counting provides only two measured
parameters, singles and doubles.

The basic principle of neutron multiplicity counting is that a third measured parameter—
triples, or the third moment of the measured neutron multiplicity distribution—is obtained.  Then it
is possible to solve for three unknown sample properties, typically the fission rate (proportional to
240Pu-effective mass), sample self-multiplication, and the (α ,n) reaction rate.  Then the plutonium
mass can be determined without knowing the multiplication or the (α ,n) reaction rate in advance.
The fourth and fifth unknown parameters, related to neutron detection efficiency, are usually
eliminated as an unknown by careful design of the multiplicity counter (see Part II) and calibration
(Part VI).  Or, for waste drums, we may consider self-multiplication to be known and solve for
detection efficiency as the third unknown.  The other potential unknowns are usually less
important, and are assumed to be small or constant in the math (Part V).

To summarize, multiplicity counting usually determines three measured parameters,
singles, doubles, and triples, and solves for three sample properties, 240Pu-effective mass, self-
multiplication, and (α ,n) reaction rate.  Because we are solving three equations for three
unknowns, the solution is exact, complete, and self-contained!  This has some interesting
consequences:

1. For samples that meet the assumptions in the derivations, the assay is bias free
and accurate within counting statistical errors.

2. If the sample does not meet the assumptions, the assay will be biased.
3. There is no need for calibration with a series of physical standards, because there is

no room in the model for unknown constants.

All of these issues will be explored in detail later in this guide.

D . Historical Reasons for Multiplicity Counting

Historically, the benefit of passive neutron counting has been the great penetrability of
neutrons through dense samples.  Neutrons are sometimes the only way to rapidly assay large,
dense samples.  The neutrons can usually measure the entire volume of the item, and they are not
easily shielded, with the exception of hydrogenous materials or those containing neutron poisons
such as boron.  The first neutron assay instruments used the total neutron rate to deduce assay
information.  However, accurate assays can be obtained only for a very few types of plutonium, as
implied by the long list of potential unknowns presented in Section C above.

The next development was neutron coincidence counting.  This technique focuses on the
spontaneous fission signature and is not affected directly by random (α ,n) reactions in the sample
matrix.  Neutron coincidence counting has had wide application for international safeguards
inspections.  It has had a more limited application in domestic accountability measurements because
large errors can occur if the technique is not applied correctly to impure materials.  The
fundamental limitation of coincidence counters is that they measure only two parameters:  the
singles and doubles count rates.  For a typical sample, there are at least the first three unknowns
listed in Section C:  mass m, sample self-multiplication, and the fraction of neutrons from (α ,n)
reactions.  If the sample contains large amounts of neutron moderating or scattering materials, the
neutron detection efficiency may be altered and may become another sample-dependent variable.

Thus it is usually not possible to obtain accurate assays of impure samples with
conventional coincidence counting.  One must either assume that the (α ,n) rate is known, and
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solve for mass and self-multiplication (Ensslin 85), or assume that self-multiplication is known,
and solve for mass and (α ,n) rate (Menlove 89).  If the assumed information is incorrect, large
errors can occur.  In fact, for many impure or heterogeneous samples, neither the multiplication
nor the (α ,n) yield can be known beforehand.

Based on the historical need for better accuracy, the goal of neutron multiplicity analysis is
to correctly assay in-plant materials without any prior knowledge of the sample matrix.  The
availability of a third measured parameter makes this possible for many materials, including moist
or impure plutonium oxide, oxidized metal, and some categories of scrap and waste.  An additional
goal for the design of new neutron counters is to obtain neutron detection efficiencies that are very
nearly independent of the sample matrix.  A useful neutron multiplicity counter should also retain
the assay speed of conventional neutron coincidence counters.  At the present time, a practical goal
for assay precision is 1% relative standard deviation (RSD) in l000 s.  The limiting factor in
meeting this goal is the poor RSD of the triples, or third moment.

E . Areas of Application for Multiplicity Counting

Passive multiplicity counting has safeguards applications in a number of different areas,
including:

a. Improved materials accountability measurements,
b. Verification measurements,
c. Confirmatory measurements, and
d. Excess weapons materials inspections.

Although the historical motivation for developing the technique was improved
accountability measurements of impure plutonium, new unexpected applications have arisen in the
areas of verification and confirmation because the technique does not require prior knowledge of
the sample, or prior calibration with representative physical standards, to obtain a fairly good assay
result.  For similar reasons, multiplicity counting is coming into use for IAEA inspections of
excess weapons materials in DOE facilities, where the inspection goal is verification of materials
that may have limited process knowledge or records.

Passive neutron multiplicity counting was developed to assay impure plutonium-bearing
materials, but multiplicity counters can be used in place of conventional coincidence counters for all
plutonium samples.  The additional multiplicity information that the counters can provide will be
beneficial primarily on impure plutonium samples such as dirty plutonium oxide, mixed Pu/U
oxide, oxidized Pu metal, Pu scrap and waste, Pu process residues, previously unmeasured
inventory, and weapons components.  There are other material categories where the multiplicity
information may not be helpful because of the limited precision of the triple coincidences.  These
materials include small Pu samples, some Pu-bearing waste, or Pu process residues that are so
impure that the high (α ,n) reaction rate ruins the precision of the triples signal.  For pure Pu metal
or oxide, the additional multiplicity information is not needed, and conventional coincidence
counting will provide better precision and sufficient accuracy.  However, if there are any doubts
about the purity of the plutonium, the multiplicity and conventional results can be compared, and
the more accurate result can be used.  If a multiplicity counter is available, it will always provide
faster and better conventional coincidence assays, because of its higher efficiency and flatter
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efficiency profile.  For the assay of bulk highly-enriched uranium, an active neutron multiplicity
counting technique is under development, but is not yet ready for inclusion in this guide.

Additional information on multiplicity counter applications and performance is given in
Part VII.

F . Advantages and Disadvantages of Multiplicity Counting

The benefits or advantages of multiplicity counting are summarized in the following list.

1. The measurement accuracy for impure plutonium samples is much greater than for
conventional coincidence counting.

2. Information on sample self-multiplication and (α ,n) reaction rate is obtained without
prior process knowledge.

3. Calibration for many material types does not require representative standards.  Thus,
the technique can be used for inventory verification without calibration 
standards, at somewhat reduced accuracy.

4. The measurement time, typically 15–30 min., is still relatively short compared to
other techniques.

5. If a multiplicity counter is used for conventional coincidence counting, one can use 
very short counting times, and expect somewhat better accuracy because of the
design of the counter.

The disadvantages of multiplicity counting are summarized in the following list.

1. The cost of a multiplicity counter is higher than the cost of a conventional
coincidence counter.

2. The multiplicity counter will require somewhat more floor space and height than a
conventional counter of the same cavity size.

3. The measurement time for good precision on triples, typically 15–30 min. or 1000 s, 
is longer than the 100- to 300-s counting time used for most conventional coincidence 
assays.

4. For plutonium samples that do not meet the assumptions required by the analysis
algorithms, some assay biases still remain.  These biases need to be removed by
the use of correction factors, special calibration procedures, or by the use of
calorimetry to resolve outliers.

Part VIII of this Applications Guide provides a summary of the criteria for when and how to select
a multiplicity counter, and where to procure one.
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II . Multiplicity Counter Design Principles

A . Multiplicity Detector Design Goals

As mentioned in Part I, the development of the neutron multiplicity technique has led to the
parallel development of a new generation of thermal neutron multiplicity counters.  Like
conventional coincidence counters, multiplicity counters are thermal neutron well counters that use
4-atm 3He tubes in polyethylene with Amptek amplifiers for neutron detection.  However, the
design process for these counters represents a significant advance in the state-of-the-art, including
the use of calculational tools such as Monte Carlo codes.  The overall goal of this design process is
to minimize the effects of detector-dependent variables, while taking into account the types of
materials the detector will be measuring.

There are at least seven variables that can affect neutron counting for quantitative assay, as
summarized in Part I.  In terms of detector design, these may be described as follows:

1. spontaneous fission neutron energy spectrum,
2. induced fissions, or self-multiplication, which may be variable

across the sample,
3. the (α ,n) reaction rate and its neutron energy spectrum,
4. spatial variation in neutron detection efficiency across the counter’s
 sample cavity,
5. potential changes in the neutron energy spectrum leaving the container

due to sample matrix materials, such as moderators,
6. neutron capture in the sample, and
7. the neutron die-away time in the detector.

In terms of these variables, the specific goals for multiplicity counter design may be
described as follows:

1. Maximize the neutron detection efficiency to increase the detected triple coincidence
count rate, which is proportional to the third power of the detection efficiency.  A
typical design goal is to achieve an efficiency in the range of 40% to 60%.  This goal
will keep the required assay time for multiplicity counting from becoming too long to
meet facility throughput requirements.  A desirable result, which can usually be
obtained in practice, is 1% RSD in 15–30 min.

2. Minimize deadtime losses in the counting electronics by substantially increasing the
number of Amptek preamp/discriminators circuits.  Multiplicity counters usually have
20 or more Amptek amplifiers, compared to six in most conventional counters.  This is
important because the triples rate is much more sensitive to electronic deadtime than the
doubles and singles rates.

3. Minimize the detector die-away time, to decrease the background of accidental
coincidences, and thereby improve the “signal-to-noise” ratio for triples.

4. Minimize the effects of sample placement in the cavity, or variable plutonium
distribution within the sample container, by making the radial and axial efficiency
profile of the sample cavity as flat as possible.
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5. Minimize the effects of variations in the sample’s emitted neutron energy spectrum due
to (α ,n) reactions or sample moderating materials.  The multiplicity analysis equations
are derived on the assumption that all neutrons are detected with the same efficiency.
However, the detector efficiency is energy dependent, so multiplicity counters are
designed to have the detection efficiency as independent of energy as reasonably
possible.  This is very important to eliminate detection efficiency as one of the potential
unknown parameters in multiplicity assay.

6. Make the size of the assay chamber as large as needed for the containers to be assayed,
but minimize the overall size of the counter, in terms of floor space required, or height
required in case of installation under a glove box.

7. Minimize the fabrication cost of the multiplicity counter.  Sometimes this goal requires
sacrificing or compromising one or more of the other goals.

B . Calculational Tools

In the design of multiplicity counters, several calculational methods are used to supplement
what has been learned experimentally from past designs of conventional coincidence counters.  The
calculational tools currently used are MCNP and Figure of Merit codes.  After the design and
fabrication of the counter is completed, the counter’s actual efficiency, die-away time, and
efficiency profiles are compared with the design calculations.  The results so far have been in
excellent agreement, thereby validating the calculational approach (Langner 91a, Langner 95).
Several examples of the use of these codes is given in Section D below.

Monte Carlo Neutron-Photon (MCNP) is a three-dimensional Monte Carlo code originally
developed for neutron and photon transport calculations in support of modeling activities
(Briesmeister 93).  The code is used to mockup the entire counter geometry, and neutrons are
transported through the counter as they undergo scattering, reflection, absorption, or fission until
they are lost from the counter.  A variety of final neutron tallies are available, including a
specialized version that tallies the first and second moments of the detected and counted neutron
multiplicity distribution (Stewart 86).  Most recently, a new modification of the MCNP code,
called MCNP-REN, has been developed to simulate multiplicity counting without using the point
model (Abhold 98).  Multiplicity counter design calculations are typically performed to a 1-sigma
precision of 0.5% to 1.0%.  Figure 2.1 is a schematic used in the Monte Carlo design of the
Plutonium Scrap Multiplicity Counter (pictured in Fig. 1.1).
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Fig. 2.1.  Design schematic for the Plutonium Scrap Multiplicity Counter.  In this cross

section of the counter, 80 
3
He tubes are arranged around the sample cavity.  The space between

the tubes is filled with polyethylene.  The graphite above and below the sample cavity scatters

and reflects neutrons trying to exit the top and bottom of the cavity.  The junction box contains

the Amptek preamp/ discriminators.  The sample cavity is open to the air at atmospheric

pressure.

Because the MCNP code provides an estimate for the expected counter efficiency and die-
away time, a Figure of Merit code can be used to determine the optimum design target values to
achieve the desired measurement precision for a given sample type.  One Figure of Merit code
developed for multiplicity counting analysis (Ensslin 90a) determines assay variance from the
reduced factorial moments of the neutron multiplicity distribution, which may be thought of as
single, double, and triple neutron coincidences.  The multiplicity distribution does not need to be
measured, but is predicted from the detector design parameters obtained from MCNP.  Also, the
expected values of the sample’s mass, self-multiplication, and (α ,n) reaction rate, and the
preselected count time, electronics package gate width, and pre-delay, are entered into the code.
Then the Figure of Merit code can predict the expected single, double, and triple count rates, and
determine the expected assay variance.  Another more direct approach, developed by Stewart (89),
provides a single equation that depends on detector efficiency and die-away time as a Figure of
Merit to quickly compare different designs.  Either approach can be used as a starting point to
determine the design performance needed for a particular sample category.
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C . How Calculations Are Used

The above calculational tools can be used in several different ways.  One approach is to
study the effects of design choices, such as tube placement; the number, size, and pressure of
tubes; the tube bank layout; the placement of different neutron moderator or reflector materials; the
use of cadmium liners; etc.  Important design issues include reducing thermal neutron return to a
sample, using end caps to reflect neutrons back into the assay chamber, using different neutron
shielding materials to protect personnel and to reduce external neutron backgrounds, and providing
a tight-fitting assay chamber with a neutron-symmetric design.

Also, the calculations can be used to predict and analyze design performance.  Important
criteria include determining the spatial response characteristics of the assay chamber (the neutron
detection efficiency as a function of location), energy response characteristics (the neutron
detection efficiency as a function of the emitted energy spectrum), sample/detector coupling effects,
and criticality safety concerns.

Lastly, calculations can be used in support of research and development activities, such as
planning for new counter designs or predicting the required counting time and expected assay
precision of upcoming measurement campaigns.  Additional schematics for several multiplicity
counter designs are given in Part III of the guide.  Examples of other applications for the
calculations are given in the next two sections.

D . Examples of Figure of Merit Calculations

This section provides examples of the use of Figure of Merit calculations of expected assay
precision.  Once the sample mass and size range to be measured have been defined, these
calculations can be used to define the target efficiency and die-away time needed to obtain a given
assay precision in a given counting time.  Fig. 2.2 illustrates the expected assay precision or RSD
vs 240Pu mass for plutonium oxide samples in a 50% efficient multiplicity counter, for 1000-s
counting time.  From this figure, one can determine whether or not a 50% efficiency is sufficient to
give the needed assay precision over the range of expected sample sizes.
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Fig. 2.2.  Figure of Merit calculation of expected assay precision (RSD) vs 240Pu-
effective mass for plutonium oxide samples in a 50% efficient multiplicity counter,
for 1000-s count time.

Fig. 2.3 is a Figure of Merit calculation of expected precision vs 240Pu-effective mass for three
values of α  (the ratio of (α ,n) to spontaneous fission neutrons) for a 57% efficient multiplicity
counter, for 1800 s count time.  As the ratio of (α ,n) neutrons emitted by the sample increases, the
assay precision deteriorates rapidly.  For impure plutonium samples, the Figure of Merit calculation is
the fastest way to determine the efficiency, die-away time, and count time that will be needed to
provide a given assay precision.

A third use of Figure of Merit calculations is to compare the expected performance of detector
designs with different combinations of efficiency and die-away time.  This facilitates the process of
design optimization.  Additional Figure of Merit calculations are illustrated in Part VII.
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Fig. 2.3.  Figure of Merit calculation of expected precision vs 240Pu-effective

mass for three values of α  (the ratio of (α ,n) to spontaneous fission neutrons)

for a 57% efficient multiplicity counter, for 1800-s count time.

E . Examples of Energy Sensitivity Calculations

The MCNP code is used to calculate the expected neutron detection efficiency as a function of
the emitted neutron energy spectrum to test the “flatness” of the multiplicity counter design.  Figure 2.4
illustrates the neutron detection efficiency (relative to the efficiency at 2 MeV) vs neutron energy for the
HLNCC-II and the In-Plant Pyrochemical Multiplicity Counter.  The HLNCC-II is a conventional
coincidence counter with one ring of 3He tubes designed for portable field applications.  The
Pyrochemical Multiplicity Counter has four rings of 3He tubes and was specifically designed to
measure process samples with variable (α ,n) yields and variable neutron energies (see Part III, Section
D).  Clearly it has a much flatter efficiency profile in terms of neutron energy.  Figure 2.5 compares
the neutron detection efficiency (relative to the efficiency at 2 MeV) vs neutron energy for the In-Plant
Pyrochemical Multiplicity Counter and the Plutonium Scrap Multiplicity Counter on an expanded scale.
We see that both multiplicity counters have similar profiles, but that the Plutonium Scrap Multiplicity
Counter, which has fewer 3He tubes, is not quite as flat as the Pyrochemical Counter.
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Fig. 2.4.  Neutron detection efficiency (relative to the efficiency at 2 MeV) vs neutron
energy for the HLNCC-II coincidence counter and the Pyrochemical Multiplicity Counter.
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Fig. 2.5.  Neutron detection efficiency (relative to the efficiency at 2 MeV) vs neutron
energy for the In-Plant Multiplicity Counter and the Plutonium Scrap Multiplicity Counter
(PSMC).
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Multiplicity counters achieve their flat energy response largely through the use of multiple
rings of 3He tubes placed at different depths in the polyethylene moderator material.  Figure 2.6
plots the relative count rate responses for the four tube rings in the In-Plant Pyrochemical
Multiplicity Counter as a function of neutron energy.  Each ring responds differently, but the sum
of all four, as plotted in Figs. 2.4 and 2.5 above, is very nearly constant.
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Fig. 2.6.  Relative count rate responses for the four tube rings in the Pyrochemical
Multiplicity Counter as a function of neutron energy.  Ring 1 is the innermost ring, and ring 4 is
the outermost ring.
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III. Survey of Existing Multiplicity Counters

A . Basic Differences between Multiplicity and Conventional Coincidence
Counters

Neutron multiplicity counters are similar in design and construction to neutron coincidence
counters.  Both are thermal neutron detector systems (rather than fast scintillators) that utilize
polyethylene-moderated 3He proportional counters.  Both employ Amptek preamp/discriminators
and shift register-based electronics packages, although for multiplicity counting the electronics
packages must be designed to collect the multiplicity distribution information, as discussed in Part
IV below.

However, multiplicity counters are designed to maximize neutron counting efficiency and
minimize neutron die-away time, as described in Part II above.  They also have much lower
electronic deadtimes, and their detection efficiencies are less dependent on neutron energy.  Table
3.1 lists the multiplicity counters that are currently in use in DOE facilities and provides a summary
of their most important design features.  By way of comparison, conventional coincidence counters
typically have one or two rings of 3He tubes, efficiencies of 18% to 25%, and deadtimes on the
order of 200 ns or more.  The rest of this part of the Application Guide provides descriptions of the
multiplicity counters listed in Table 3.1.

B . Five-Ring Multiplicity Counter

This counter is the first thermal neutron counter designed specifically for multiplicity
measurements (Krick 84, Langner 91).  It was built with five rings of 3He tubes to ensure a very
high neutron detection efficiency for developing new multiplicity techniques (see Fig. 3.1).
However, the 3He tubes were originally installed in an aluminum moderator assembly to minimize
the neutron die-away time.  It was also possible to wrap each 3He tube individually with a
removable cadmium liner, and for that reason the counter was called the Dual-Mode Multiplicity
Counter.  With the cadmium in place, the efficiency was found to be 17%, with a die-away time of
11.8 µs.  With the cadmium removed, the efficiency was found to be 53%, with a die-away time
of 57 µs .

Fig. 3.1.  Schematic of the Five-

Ring Multiplicity Counter.
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Recently, the Five-Ring counter was rebuilt with polyethylene moderator rather than
aluminum to improve the energy response profile for measurement control studies.  The efficiency
is still 53%, and the neutron die-away time is now 49 µs.  The Five-Ring counter played a very
important role in the development of multiplicity counting because it demonstrated that thermal
neutron multiplicity counters could provide good assays of plutonium samples in reasonable
counting times.

C . Three-Ring Multiplicity Counter

The Three-Ring Multiplicity Counter was originally built as an experimental active well
coincidence counter.  It was converted from an active counter to a passive counter by removing the
polyethylene end plugs that held the AmLi sources and replacing them with shorter graphite end
plugs.  The counter was also upgraded by replacing the six original preamplifier boards in the
high-voltage junction box with 12 Amptek Boards and a derandomizer.

This counter has been used for research and development activities, for training classes in
multiplicity counting, and for temporary use in IAEA inspections of excess weapons materials at
the Hanford facility (Stewart 96a).  However, because this counter is actually a converted
conventional coincidence counter, its performance specifications are not as good as those of a
counter specifically designed to be a multiplicity counter.  The neutron detection efficiency is lower
(only 45%), and the spatial and energy response profiles are not as flat.  Nevertheless, the counter
was able to verify most of the items assayed at Hanford, thereby significantly reducing the number
of samples taken for destructive analysis.

D . In-Plant (Pyrochemical) Multiplicity Counter

Based on experience gained with the above research counters, the In-Plant or Pyrochemical
Multiplicity Counter was designed to be more suited to in-plant use and to optimize the parameters
identified as important for multiplicity assay (Langner 91a, b).  The counter was designed in two
halves, so that it could be installed around a facility glove-box well.  The design schematic is given
in Fig. 3.2.  The optimum arrangement of 3He tubes, a 1.59-cm tube spacing, and the best choice
for the end plug materials was determined from Monte Carlo design calculations (Langner 90).
The result is a very high performance counter with a single-exponential die-away curve.  The very
flat energy response profile of this counter was illustrated in Fig. 2.4 and 2.5 in Part II, and the
energy response of the individual tube rings was illustrated in Fig. 2.6.  The spatial response
profile is also very flat, as shown in Langner (91a).



19

Polyethylene

Graphite

Aluminum

Helium-3

Air

Junction Box

80.6 cm

106.7
 cm

Sample Cavity is 24.1 cm x 37.5 cm
           and is Cadmium Lined          126 Tubes

Tube Spacing is 1.59 cm

Floor

Fig. 3.2.  Design schematic for the In-Plant (Pyrochemical) Multiplicity Counter.

The In-Plant Counter has been used in the Los Alamos Plutonium Facility and at the
Lawrence Livermore National Laboratory to assay inventory items.  At Los Alamos, the counter
was used to assay Pu metal, oxide, and high (α ,n) reaction electrorefining salts (Krick 92).  At
Livermore, the counter was used to assay low and high burnup Pu metal and oxide (Langner 93b).
These in-plant evaluations established for the first time that the three-parameter multiplicity analysis
model (described in Part V below) would yield assay results (described in Part VII below) that
were significantly better than those obtained by conventional two-parameter coincidence counting.

E . Plutonium Scrap Multiplicity Counter

The Plutonium Scrap Multiplicity Counter (PSMC) is a high-efficiency multiplicity counter
for the measurement of impure plutonium and mixed oxide (MOX) scrap materials in the mass
range of a few tens of grams to several kilograms of high-burnup plutonium (Menlove 93).  The
PSMC was pictured in Fig. 1.1, and a design schematic was given in Fig. 2.1.  It was designed to
be more compact in size and weight than the In-Plant Multiplicity Counter and to use fewer 3He
tubes.  The outer dimensions of the counter are 66 cm by 66 cm by 92 cm high.

MCNP calculations were used to improve the PSMC significantly compared with prior
designs.  For example, the In-Plant Counter used 126 tubes to obtain an efficiency of 57%,
whereas the PSMC uses 80 tubes to get an efficiency of 55%.  One way this was achieved was to
reduce the number of 3He tubes in each ring in proportion to the decrease in the thermal neutron
flux intensity in the moderator.  Thus the last ring of 3He tubes is only about half filled, and in
Table 3-1 the PSMC is described as having 3 1/2 rings of tubes.  These design features resulted in
slight degradations in the die-away time and energy response.  The energy response profiles of the
two counters were illustrated in Fig. 2.5.
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The PSMC uses 19 Amptek preamp/discriminator circuits.  In the inner ring, there are three
3He tubes per Amptek, and in the outermost ring there are six tubes per Amptek.  Figure 3.3 is a
photograph of the 3He tubes, high-voltage junction box, and Amptek indicator lights on the
PSMC.  The multiplicity deadtime coefficient is 121 ns.  The axial efficiency profile is constant to
within ±2% over the 41-cm height of the cavity.  This makes it easy to place most scrap and MOX
containers entirely within the flat portion of this efficiency profile.  The first PSMC was fabricated
for a MOX facility in Japan.  The PSMC is now commercially available through Canberra
Industries, Inc.

Fig. 3.3.  Photograph of the 3He tubes and high-voltage junction box
partly withdrawn from the Plutonium Scrap Multiplicity Counter.

F . ARIES Neutron Counter (ARNC)

An in-line active/passive neutron counter has been developed for permanent installation in
the Los Alamos Plutonium Facility (Sampson 93).  The Advanced Recovery and Integrated
Extraction System (ARIES) Neutron Counter (ARNC) will provide the ARIES weapons
dismantlement project with the capability to handle both plutonium and uranium items.  Plutonium
assays can be done by passive neutron coincidence counting, passive multiplicity counting, or
combined active minus passive coincidence counting.  Active assay of uranium will be
accomplished using a separate, removable set of end plugs equipped with AmLi neutron
interrogation sources.  Sample changing or changing of the end plugs from passive to active will
be accomplished by a robotic sample-handling system built into the glove box.

The ARIES Neutron Counter will have similar performance to the PSMC, with the same
number of 3He tubes (80) and tube rings.  Because the body of the counter needs to split into two
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halves for installation around the glove-box well, the counter has 20 rather than 19 Ampteks.
Also, a derandomizer circuit is provided, so the multiplicity deadtime is less than for the PSMC.

G . FB-Line Multiplicity Counter

The FB-Line Neutron Multiplicity Counter (FBLNMC) was developed to measure impure
plutonium at the Westinghouse Savannah River Site FB-Line Facility (Langner 97c, Langner 98).
The FBLNMC can be applied to impure samples that range in mass from a few tens of grams to
several kilograms of plutonium; both conventional coincidence counting and multiplicity counting
can be used as appropriate.  The instrument can measure neutronically thin materials such as oxides
and residues using a single calibration.  Metal buttons require an additional calibration.

The new FBLNMC was designed to provide all state-of-the-art features in a single compact
package.  Monte Carlo calculations were used to design the high-efficiency (57%) detector using
113 3He tubes in a high-density polyethylene body (see Fig. 3.4).  There are several improvements
over the earlier PSMC design that are important for the wide variety of materials to be measured at
Savannah River.  The axial efficiency profile varies by less than ±2% over the height of the cavity,
and the radial efficiency variation over a 16-cm diameter can is only 1.5% at the midplane of the
sample cavity.  A derandomizer circuit (described in Part IV below) reduces the deadtime of the
counter by more than a factor of 2 to 50 ns.  The overall energy response profile of the counter is
extremely good, identical to that of the Pyrochemical Multiplicity Counter (see Fig. 3.5).  Also, the
individual ring outputs can be read by two auxiliary scalars to diagnose sample anomalies.  The
ratio of the rates in the inner to outer rings provides a sensitive indication of the mean energy of the
neutrons emitted by a sample and is strongly influenced by sample moderator or (α ,n) reaction
neutrons.

Polyethylene

Graphite

Helium-3 Tubes

Air

Junction Box

113 tubes

       

Sample Cavity is 20cm x 41 cm
and is Cadmium Lined

92 cm

66cm

Floor

Fig. 3.4.  Schematic diagram of the FBLNMC showing the
location of the 113 3He tubes and the graphite end plugs.
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H . Large Neutron Multiplicity Counters

The Large Neutron Multiplicity Counter (LNMC), or 30-gal. Drum Counter, represents an
important extrapolation of neutron multiplicity design concepts to a much larger sample volume
(Langner 94).  The number of 3He tube rings was reduced to three to save cost, but aluminum
corner reflectors are used to help maintain a good spatial response profile near the corners.  To
facilitate loading heavy 30-gal. drums or ATR400 long-term storage containers from the side rather
than the top, a hexagonal design was used, with the two front sides forming the doors.  The
mechanical arrangement of the counter and the doors is shown in Fig. 3.6.  The counter has an
efficiency of 42% and a die-away time of 55 µs, which is sufficient for multiplicity analysis of
bulk plutonium materials in the kilogram range (Langner 95).  Fifty-four Amptek
preamp/discriminators and a derandomizer circuit are used to obtain an extremely low multiplicity
deadtime of 25 ns, which is very helpful for assay of such large items.
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Fig. 3.6.  Mechanical schematic for the Large Neutron Multiplicity Counter.

One LNMC is installed at the Rocky Flats Environmental Technology Site (RFETS) where
it is used for IAEA inspections of excess weapons materials (see Fig. 3.7).  The RFETS materials
offered for IAEA inspections consist of two 2-kg Pu oxide cans stacked one above the other in a
10-gal. drum (Langner 96b).  On such samples, the average neutron counting precision is about
2.6% in 30-min counting times, except for samples with high (α ,n) reaction rates, where the
precision ranges from 3% to 12%.  For over 100 drums measured so far during the Physical
Inventory Verification exercises, the LNMC was able to verify all to within 3 standard deviations
or better, except for one drum with an unusually high neutron emission rate (Langner 97b).
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Fig. 3.7.  The RFETS Large Neutron Multiplicity Counter.

Another LNMC is installed at the Livermore Nuclear Materials Facility, where it is used for
inventory verification.  The efficiency and die-away time of this counter are nearly identical to the
one at RFETS, with only slight differences due to variations in mechanical fabrication and
assembly (Langner 95).  In addition, the Livermore counter is equipped with active inserts that fit
into the top and bottom of the assay chamber.  These can be used for active coincidence or active
multiplicity counting of uranium items.

I . Shield Cell Drum Counter

Neutron coincidence counters large enough to assay plutonium waste in 55-gal. drums
usually have detection efficiencies in the range of 15% to 18%.  Also, waste drums may contain
only a few grams of plutonium, rather than bulk quantities.  Both of these considerations suggest
that the triples count rate in waste might be too low to obtain multiplicity assays in reasonable
counting times.  However, because multiplicity analysis of waste offer several potential benefits
for safeguards, new waste drum counters with substantially higher neutron detection efficiencies
have recently been developed.

One of these is the Shield Cell Drum Counter, which is built into a shield cell at the Los
Alamos safeguards laboratory (Pickrell 96).  Figure 3.8 is an overview of this multiple-purpose
counter and its movable entry door.  The counter is built next to the 5-ft-thick wall of the shield
cell, so that the wall can be used to store californium neutron sources.  The assay system can serve
as a californium shuffler for active neutron assay, and as a passive neutron multiplicity counter
with segmented add-a-source matrix correction capability.
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Fig. 3.8.  The Shield Cell Drum Neutron Counter, with multiplicity,
shuffler, and add-a-source capability.

The Shield Cell Drum Counter contains a single assay chamber for 55-gal. drums.  The
drum to be assayed is placed in the chamber where it is surrounded by neutron detectors on all four
sides and on the top and bottom.  This 4-π geometry provides good detection efficiency, shields
against room background, and provides a detector response that is independent of the actual
location of the plutonium within the drum, to about 5% or 10%.  The drum is also rotated for
maximum coverage and interrogation uniformity.  There are 89 3He tubes positioned in two rows
in the six banks, and the neutron detection efficiency is roughly 30%, with a 65-µs die-away time.
The die-away time of this counter is not a pure exponential, due in part to the use of novel
moderator materials other than polyethylene and to the large size of the cavity.  Also noteworthy is
the use of 33 fast preamp/discriminators from PD, Inc., rather than the Amptek units used for other
multiplicity counters.

J . High-Efficiency Neutron Counter (HENC)

The High-Efficiency Neutron Counter (HENC) is a waste drum counter developed by
Canberra Industries and Los Alamos National Laboratory under a Cooperative Research and
Development Agreement (CRADA) on evaluation of detector design concepts (Menlove 96).
Figure 3.9 is a top view of the HENC taken during a waste assay training school in 1996.  This
counter was designed to be a high-efficiency, low-detectability limit passive neutron coincidence
counter with multiplicity and segmented add-a-source matrix correction capability.  An automated
drum-handling system is used to open and close the assay chamber door, load and unload drums
from the conveyor system, and rotate the drums while they are being assayed.  The assay chamber
size was set to be the same as the existing Canberra Model JCC-21 Waste Drum Coincidence
Counter to reduce design and fabrication costs.
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Fig. 3.9.  Top view of the High Efficiency Neutron Counter developed by
Los Alamos National Laboratory and Canberra Industries.

The design of the HENC was optimized on the basis of a detectability limit figure of merit
based on detector efficiency, neutron die-away time, and the detector’s active volume and density,
which determines the cosmic-ray background.  There are a total of 113 3He tubes on the sides, top,
and bottom of the assay chamber.  The neutron detection efficiency is 32%, the die-away time is
5 0  µs, and the minimum detectability limit is approximately 0.5 mg 240Pu-effective by singles
counting and 1.7 mg by doubles counting at sea level.  The HENC has performed successfully in
the Waste Isolation Pilot Plant (WIPP) NDA Performance Demonstration Program, and the add-a-
source and multiplicity features provide information that can be used for safeguards diversion
detection.
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K . Plutonium Residues Multiplicity Counter

The Plutonium Residues Multiplicity Counter (PRMC) was designed by Canberra
Industries based on adaptation of the PSMC design to a larger assay chamber (McElroy 97).  The
assay cavity is actually 36 cm in diameter x 46 cm high, of which the central 30-cm diameter by
30-cm height is considered to be the active sample volume, with efficiency variation of less than
1% RSD.  The PRMC is a “mid-range” performance counter designed to meet facility
specifications.  Two units have been provided to Rocky Flats for assay of plutonium-bearing salts
and residues.

L . Multiplicity Analysis with Conventional Counters

Conventional coincidence counters can sometimes be used as multiplicity counters with the
addition of multiplicity electronics and software.  However, the performance of such systems
cannot match that of counters designed specifically as multiplicity counters.  The most serious
drawback is lack of neutron detection efficiency, so that counting times may be 4 h or more to
obtain the same assay precision as a 15-min. multiplicity counter measurement.  In such cases, the
count time advantage of neutron counting over calorimetry is completely lost, and calorimeters
should be used instead if they are available with appropriate sample cavity sizes.  Less obviously,
significant assay biases can arise from measurements of heterogeneous samples in counters that are
not designed to have flat spatial and energy response profiles.  Also, multiplicity deadtime
corrections may be very serious (or even give negative results!) in counters with just a few
preamplifiers.

One example of a relatively successful use of a conventional counter for multiplicity assay
is documented in Rinard (97).  A 55-gal. drum pass-through shuffler was used at Savannah River
for inventory verification of items that could not fit into smaller counters.  Because the shuffler
detection efficiency is about a fourth of the efficiency of a multiplicity counter, the required
measurement times were about 15 times as long for the same statistical precision.  In this case, the
inventory was not so large that this restriction was prohibitive.  Even so, the assay precision was
acceptable only because most of the items contained large masses of plutonium metal, oxide, or
MOX, and because assay errors other than counting statistics dominated the measurement errors.
In this measurement campaign it was possible to verify most of the small plutonium items with
conventional passive coincidence data, but all of the large plutonium items could be verified only
with the multiplicity results.
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IV. Multiplicity Electronics

A . Overview

The electronics used for thermal neutron multiplicity counters are similar to that used for
conventional coincidence counters.  They are based on the detection of neutrons with 

3
He

proportional counters embedded in a polyethylene moderator, and they use the same amplifier
electronics system.  There are other options for thermal neutron counters, as summarized in Crane
(91).  Fast neutron multiplicity counting is another alternative, such as the use of plastic
scintillators (Ensslin 82), liquid scintillators (Wachter 87), and borated plastic scintillators (Miller
96).  At this point in time, the benefits of the thermal neutron counting approach (high-efficiency,
energy insensitivity, reliability, and stability) outweigh the potential benefits of fast neutron
counting (reduced accidental coincidences and shorter counting times).

This part of the Applications Guide will first describe conventional coincidence electronics
components, including the 

3
He proportional counter electronics and the conventional shift register

electronics, and their associated deadtimes.  However, as mentioned in Parts II and III, multiplicity
counters will have many more 

3
He tubes, for higher efficiency, and many more Amptek

preamp/discriminators, for shorter deadtime.  Then we will describe some of the differences that
are important to multiplicity counting, including the use of derandomizer circuits.  The most
commonly used multiplicity shift registers are described in sections I through L.

B . Thermal Neutron Detection and Die-Away Time

The process of detecting thermal neutrons involves first moderation then capture in a 
3
He

proportional counter embedded in the moderator.  Neutron moderation is the process by which a
neutron collides with matter and loses energy.  The most energy will be lost (the best moderation)
when the neutron collides with nuclei of similar mass, such as hydrogen (protons) in water or
polyethylene.  A neutron from spontaneous fission has an initial energy of about 2 MeV, and will
be moderated to room temperature, 0.025 eV, by about 27 collisions in hydrogen.  This
moderation process is essential because the probability of neutron capture in 

3
He is largest when

the neutrons have energies near thermal (see Crane 91 for the capture cross sections).  The capture
reaction is

n + 3He --> p + 3H + 765 keV.

Typically, the multiplicity counter will have 80 to 130 3He tubes at 4-atm pressure and 1-in.
diameter, with the effective length varied to suit the size of the counter.  The reaction energy of
765 keV appears as the kinematic energy of the proton and triton, and is collected as a charge
pulse.  Some important advantages include very low gamma-ray sensitivity, very high stability,
and high intrinsic efficiency for neutrons that strike the 3He tube (Crane 91).

After moderation, neutrons are lost in the detector by several processes:  diffusing out of
the detector, diffusing to a 3He detector tube and being captured and detected, or absorption by
hydrogen, cadmium, plutonium, or other neutron absorbers.  As a consequence of all these
processes, the neutron population in the counter dies away with time in a gradual fashion after a
spontaneous fission occurs.  In most thermal neutron detectors, the average probability that a given
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neutron will be lost as it travels through the counter is nearly constant with time.  Under these
conditions, the neutron population decreases exponentially in time:

N t N e
t

( ) ( )=
−

0 τ , (4-1)

where N(t) is the neutron population at time t, and τ is the mean neutron lifetime in the counter, the
“die-away time.”

C . Thermal Neutron Detector Electronics

The neutron capture reaction energy of 765 keV appears in the 
3
He tube as the kinematic

energy of the proton and triton, and as these particles slow down and ionize the gas, this energy is
collected as a charge pulse because of the high voltage applied across the tube wall and its central
anode wire.  Figure 4.1 illustrates this process and shows the charge collection electronics.  The
applied high voltage is typically 1500 to 1680 V so that the 

3
He tubes are operated in the

proportional mode, where the initial ionization charge is amplified by a factor of 103 to 105.  The
3
He tubes will produce a broad distribution of electrical output pulses depending on the location of

the neutron capture in the tube and the direction of the outgoing reaction products.  The pulses will
have a fast rise time of about 0.1 µs due to collection of electrons at the anode, but collection of
positive ions at the outer tube wall, the cathode, may take up to 200 µs.  The recovery time of a
3
He tube, the time before it can provide another output pulse, which may overlap a previous pulse,

is typically 1 to 2 µs .
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Fig. 4.1.  The neutron capture process in 3He tubes and the associated charge collection electronics.

Typically, Amptek integrated circuits are used to amplify the tube output pulses, set the counting
threshold, and convert the pulses above the threshold to digital pulses.  This circuit, manufactured
by AMPTEK, Inc., of Bedford, Massachusetts, consists of a Model A-111 hybrid charge-sensitive
preamplifier, an amplifier with a bipolar output, a discriminator set to provide 50 ns output pulses,
and a pulse-shaping circuit.  The Amptek circuit provides sufficient gain and signal-to-noise ratio if
the 

3
He tubes are operated at about +1680 V and has an effective time constant of about 150 ns.

This defines the minimum recovery time of the Amptek, the time before it can provide another
50-ns-wide output pulse.  Each Amptek is mounted on a small circuit board that also provides an
output pulse to drive one light-emitting diode (LED) that flashes whenever a neutron is detected.
Figure 4.2 illustrates one Amptek channel processing the input signals from three 

3
He tubes.
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Fig. 4.2.  Electronic layout with one Amptek channel processing the input signals from

three 
3
He tubes.

The physical layout of the tubes and Amptek circuit boards on the Plutonium Scrap
Multiplicity Counter is visible in Fig. 3.3.  The 

3
He tubes are screwed into the bottom of a

cylindrical junction box to provide good grounding.  The junction box is split into two horizontal
layers, with the bottom one providing the high-voltage (HV) distribution lines and isolation
capacitors shown in Fig. 4.1.  The top layer holds the Amptek boards, the wires required to
provide the boards with +5V DC operating power, and the 50-ns discriminator output lines.  Also,
all of the LED output signals from all of the Amptek boards are brought out to a single display
panel on the side of the junction box.  This provides the operator with a quick visual diagnostic to
ensure that all Amptek channels are operating during sample assays.  The junction box is sealed
with a tight-fitting lid with an O-ring seal, and is equipped with several self-indicating desiccant
holders.  This is intended to prevent HV breakdown in the HV distribution network, which can
cause electronic noise bursts that are detected as spurious coincidence events.

Figure 4.3 shows how the individual Amptek modules can be connected together via an OR
circuit to provide a single input line to the shift register circuitry.  The use of many Ampteks greatly
reduces the overall counting deadtime of the counter, because it’s unlikely that the following
neutrons from a fission event will enter the same 

3
He tube as the first one.  However, the OR-gate

has a deadtime due to accidental overlap of the 50-ns input pulses.  For n Amptek modules, the
deadtime is given by (Ensslin 91a)

OR gate deadtime
n

n
ns− − = −





1
50( )    . (4-2)
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Fig. 4.3.  Electronic layout (simplified) of multiple Amptek modules connected
together via an OR circuit to provide a single output line.

D . Derandomizer Circuit

The OR circuit described in the preceding section can be replaced with a derandomizer input
circuit that eliminates this source of deadtime.  This circuit can be a very useful addition to
coincidence counters operating at high count rates, or to multiplicity counters because the triples
counts are very sensitive to deadtime.  The derandomizing buffer holds pulses that are waiting to
enter the shift register, thus eliminating the input synchronization losses given by Eq. 4-2.  Input
pulses separated by less that 100 ns—the clock period of the circuit—are stored in buffers until the
coincidence or multiplicity shift register can accept them.  The word “derandomizer” refers to the
fact that the initial input events are now “quantized” into periodic 100-ns-long time intervals.

The most recently developed derandomizing circuit is implemented in a single Actel field-
programmable gate array (FPGA) that can be installed directly in the high-voltage junction box
with the Amptek circuits (Bourret 94).  The derandomizer consists of 32 input channels that can
hold up to three events from each of 32 Amptek circuits.  There are seven outputs:  four groups of
eight channels each, two groups of 16 channels each, and one group of all 32 summed channels.
These groupings were selected to facilitate detector ring-ratio measurements.  The outputs are
clocked at a 10-MHz synchronous rate and produce a 50-ns pulse for each input event.  With this
derandomizing circuit, a conventional shift register can be operated at count rates approaching
2 MHz with virtually no synchronizer counting losses.  A multiplicity counter will have a triples
deadtime correction of about 50% at a count rate of 500 to 900 kHz.

E . The Neutron Pulse Stream and Rossi-α  Distribution

The Amptek modules and OR gates described above provide a stream of electronic pulses,
each representing one detected neutron, to the input of the coincidence circuit.  The pulse stream
contains some combination of spontaneous fission, induced fission, (α ,n) neutrons, and external
background events.  Figure 4.4 illustrates a neutron pulse stream that contains both correlated and
uncorrelated events.  Using this pulse stream, we need to separate out the correlated neutron events
that are the quantitative signature for plutonium from the background of uncorrelated neutron
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events.  We cannot distinguish individual neutrons, the order of neutrons in coincidences, or
which individual neutrons are fission coincidences and which are (α ,n) neutrons.  The
mathematical basis for defining correlated and uncorrelated neutrons is given in Part V below.
Here we just need to distinguish their time dependence to understand the operation of the shift
register coincidence circuits.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

time

Fig. 4.4.  A neutron pulse stream that contains both correlated (striped bars) and
uncorrelated (black bars) events.

The Rossi-α  distribution, developed for reactor noise analysis, is the distribution in time of
events that follow after an arbitrarily chosen starting event.  If only random, uncorrelated events
are being detected, the distribution is on the average constant in time.  If correlated events from
fission are also present, then the Rossi-α  distribution is given by

N(t) = A+ Re
− t

τ . (4-3)

N(t) is the height of the distribution at time t, A is the accidental or random count rate, and R is the
real or correlated count rate.  Figure 4.5 is a histogram of the Rossi-α  distribution associated with
the neutron pulse stream shown in Fig. 4.4.  The initial trigger events at t=0 can be either
correlated or uncorrelated events.  The dark bars represent fission neutrons correlated to the initial
pulse (the R rate in Eq. 4-3).  The striped bars are neutrons from fissions that are not correlated to
the initial event, either because the initial event was a random neutron or because it was from a
different fission.  The white bars are uncorrelated background neutrons, or neutrons from fissions
where only a single neutron was detected.  Note that the accidental rate A contains both of these
components.
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Fig. 4.5.  Histogram of a Rossi-α  distribution associated with the neutron pulse stream
shown in Fig. 4.4.  An actual measured distribution with exponential die-away time is
superimposed above the histogram, and  the (Reals + Accidentals) and (Accidentals)
coincidence counting gates are superimposed at the bottom of the histogram.

Figure 4.5 also shows two coincidence counting intervals superimposed, the R+A (Reals plus
Accidentals) and A (Accidentals only).  These are described in Section G below.

F . Predelay Circuit

In Fig. 4.5, an example of an actual Rossi-α  distribution with an exponential die-away time
is superimposed above the histogram.  Note that the actual distribution does not continue as a
rising exponential all the way down to t=0.  This is because of small electronic deadtimes or pulse
pileup effects in the 3He tubes, Ampteks, OR gates, or other components.  The most important
cause of pulse pileup is usually amplifier baseline displacement following a pulse.  Any closely
following pulses that fall on the displaced bipolar baseline of the Amptek amplifier before it is fully
restored to zero may have a higher or lower probability of triggering the discriminator.  Bias
resulting from pulse pileup is proportional to the square of the count rate and may become
noticeable only at high count rates.

To reduce these deadtime and pileup effects, a short shift register called the “predelay” is
located at the input to the coincidence or multiplicity shift register circuits (see for example the
conventional shift register circuit shown in Fig. 4.6).  This circuit delays the start of the
coincidence counting interval for the R+A gate until a short time interval PD (the predelay) has
passed.  The length of the predelay is typically 3 to 4.5 µs.  If it were not present, the effective
length of the R+A gate would be reduced by some poorly determined time of 1 to 2 µs or more,
depending on the count rate.  Then the R+A gate would be shorter that the A gate, and a counting
imbalance would result.  “Bias” is defined as the difference between the R+A and A counting rates
when a random source such as AmLi is used.  For a random source the difference should be zero.
If it is not, the percent bias is 100 R/A.
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Fig. 4.6.  Conventional shift register circuit.

It is important to select the length of the predelay based on the speed of the amplifier, the
storage capacity of any derandomizer that is used, and the expected count rate.  If the amplifier
baseline is not fully restored in a time less that the predelay, the effect will extend into the R+A gate
and a bias will result.  The Amptek A-111 amplifier requires a predelay of only 3 µs for a bias of
less than 0.01% at a count rate of 500 kHz.  Also, as the derandomizing buffer stretches pulse
strings out in time, it may create strings longer than the predelay and thereby produce a bias.  If the
multiplicity counter is expected to operate at singles count rates in excess of 500 kHz, the predelay
setting and the remaining bias should be checked with a strong AmLi source.

G . Conventional Shift Register Basics

The goal of the conventional coincidence shift register circuit is to separate the incoming
neutron pulse stream into correlated and uncorrelated events, and thereby provide a quantitative
measure of a sample’s fission rate.  The shift register, shown in Fig. 4.6, achieves this in an
elegant fashion.  All neutrons are “remembered” by the shift register, enabling it to collect all
possible neutron pairs in an inherently deadtime-free manner.  This is done by storing all incoming
pulses for a predetermined coincidence interval, the gate width G, in an integrated circuit called a
shift register.  The circuit consists of a series of clock-driven flip-flops linked together in stages.
For example, a 128-stage shift register driven by a 4-MHz clock (0.25 µs/stage) defines a gate
G of 32 µs.  Incoming pulses shift through the register one stage at a time and the whole process
takes 32 µs .

Operation of the shift register coincidence circuit can be visualized in terms of the Rossi-α
distribution shown in Fig. 4.5.  This figure shows a prompt gate of width G that opens after the
predelay PD and that collects real and accidental coincidences.  After a delay much longer than the
neutron die-away time in the detector (modern circuits use up to 4096 µs), another gate is opened
that collects only accidental events.  The difference between the counts collected in the R+A gate
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and those collected in the A gate is the desired real signal R (or that fraction of R that lies within the
gate width G).

The shift register collects the counts in the R+A and A gates without explicitly measuring
the entire Rossi-α  distribution.  Every input event passes through the predelay and then passes into
and through the R+A gate.  Figure 4.7 compares this process to an escalator.  Every event that gets
on the escalator increments an up-down counter, and every event that gets off decrements the up-
down counter, so that this counter keeps a running tally of the total counts in the shift register.
Every input pulse, before it enters the predelay and the shift register, also provides a strobe pulse
that transfers the current contents of the up-down counter to an accumulator that serves as the R+A
scaler.

Counts pulses on Escalator

Increments when pulse “gets on”

Sum up all counts

Decrements 
when pulse 
“gets off”
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er
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he
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Fig. 4.7.   Comparison of the shift register circuit to an escalator.

This counting algorithm records all possible pairs of coincidences between events.  An
example is given in Fig. 4.8.  As four pulses pass through the shift register, the number on the
escalator is 0, 1, 2, and finally 3 counts.  The accumulator count rises from 0 to 1, then 3, then 6.
Figure 4.9 shows that 6 is the total number of possible coincidences between 4 events, and that in
general the number of coincidences recorded for n closely following events is n(n-1)/2.  This
equation is the reduced second factorial moment of the distribution P(n) of incoming neutrons, as
described in detail in Part V of this guide.  Note that the possible permutations in counting two-fold
coincidences can exceed the number of events.
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Fig. 4.8.  Example of shift register operation as four neutron pulses pass
through the shift register.
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1 Pulse, 0 Coincidences

2 Pulses, 1 Coincidence

3 Pulses, 3 Coincidences

4 Pulses, 6 Coincidences

Fig. 4.9.  Illustration of the total number of possible coincidence pairs between
1, 2, 3, or 4 neutron pulses.

The coincidence events in the R+A gate can represent two or more neutrons from a real
fission event, or just the random overlap of background neutrons or neutrons from different
fissions, as illustrated in the Rossi-α  distribution in Fig. 4.5.  To separate out the accidental
coincidences, a second accumulator is introduced, but the strobe that triggers this accumulator is
delayed by 4096 µs.  Because this delay is much longer than the neutron die-away time in the
detector, it's extremely unlikely that any correlated events will be collected.  Hence this second
scaler collects only accidental events.  The number of accidental events collected in the A scaler will
be the same as those in the R+A scaler within counting statistics, so that the difference between the
R+A and A scalers is R.  The accidental count rate A is related to the singles count rate S by the
equation

A =GS 2 . (4-4)

This nonlinear relationship shows that A will exceed S when the singles count rate is greater than
1/G.  Because Eq. 4-4 must hold within counting statistics, unless the background is fluctuating
tremendously, it provides an excellent diagnostic check on the operation of shift register circuitry.

H . Multiplicity Shift Register Basics

There is more information in a neutron pulse stream than just single and double neutron
events.  In multiplicity counting, we look at the distribution of 0’s, 1’s, 2’s, 3’s, etc. in the
coincidence gates to deduce the multiplicity distribution of the neutron events.  Special multiplicity
electronics are required to measure the neutron multiplicity distributions in the R+A and A
coincidence gates.  The multiplicity measurement records the number of times each multiplicity
occurs in the coincidence gates.  For example, if seven neutron pulses are in a coincidence gate
when another neutron arrives, then “1” is added to the counter that tallies multiplicities of seven.
Figure 4.10 is a simplified circuit diagram for a multiplicity shift register.
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Fig. 4.10.  Multiplicity shift register circuit.

Separate multiplicity distributions are measured for the R+A and A coincidence gates.
Table 4.1 shows typical R+A and A multiplicity distributions measured with a 60-g plutonium
oxide sample measured in a multiplicity counter with roughly 56% neutron detection efficiency.
Each distribution contains the number of times each multiplicity occurred in the corresponding
gate.  As an example from this table, seven neutron pulses were found 183 times in the R+A
coincidence gate, and 42 times in the A coincidence gate.

Table 4.1.  Multiplicity Distribution for a 60-g Plutonium Oxide Sample.

Multiplicity
Counts

 (R+A Gate)
Counts

 (A Gate)
0 26804360 29731130
1 8187530 6222207
2 1772831 1016603
3 325270 157224
4 53449 22387
5 8231 3093
6 1237 402
7 183 42
8 30 8
9 2 1
10 0 0

The sum of all the multiplicities in the A distribution (37,153,097) is the total number of
triggers, because the singles scaler is situated at the output of the A scaler.  The sum of all the
multiplicities in the R+A distribution (37,153,123) is not always equal to the total number of
triggers because the R+A gate interval is shifted by about 4 ms from that of the A gate.  For a
purely random pulse stream, the two distributions are the same within statistical errors.  For a
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correlated pulse stream, the R+A distribution has more high-multiplicity events, and the A
distribution has more events with multiplicity 0 (i.e., a trigger with no following events).

The two distributions in Table 4.1 can be analyzed to obtain the number of single, double
and triple neutron pulses.  But note that the number of 1’s, 2’s, and 3’s in Table 4.1 above is not
what we call the singles, doubles, and triples!  Instead, the singles rate is the sum of all the triggers
divided by the count time.  The doubles rate is the sum of all the triggers divided by the count time,
times the mean of the R+A distribution minus the mean of the A distribution (see Eq. 5-15 in Part
V).  The doubles is the same as the conventional shift register output.  The triples is a more
complex unfolding of the R+A and A distributions, and is given by Eq. 5-16 in Part V.  Of course,
a conventional shift register cannot determine the triples because it does not measure the
multiplicity distributions.

The reason that we have to measure very high multiplicities, 8’s, 9’s, 10’s, etc., is that the
average number of events inside the gate width of the shift register is the singles count rate times
the gate width.  For example, if the singles rate is 100,000 counts/s, and the gate width is 64 µs ,
the average number of events in either the R+A or the A gate at any given time is 6.4.  So even for
a purely random neutron source, we will record two R+A and A multiplicity distributions that
range from 0’s to 15’s or 20’s, with their peak around 6 or 7.

I . Los Alamos MSR4/Canberra 2150 Multiplicity Shift Register

The first multiplicity shift register developed at Los Alamos National Laboratory for in-
plant assay applications was the Model MSR4 (Halbig 91), built as a double-wide nuclear
instrumentation module (NIM module).  It was preceded by several prototype designs used for
multiplicity counter development activities.  It is now commercially available through Canberra
Industries as a single-wide NIM module called the Canberra Model 2150.

The MSR4 described in Halbig (91) is built on application-specific programmable logic
chips that operate on +12V, -12V, and +5V power supplies at a clock speed of 4 MHz.  Figure 1
of Halbig (91) is a detailed block diagram of the circuitry.  The singles counting register is 32 bits
deep, and the R+A and A registers are 44 bits deep.  There are 256 multiplicity registers for the
R+A gate and 256 for the A gate, all of which are 8 bits deep before overflow and readout is
required.  Registers 0 through 254 record multiplicity events ranging from single neutrons (trigger
without any following events) through 255 neutrons (trigger plus 254 following events).  Register
255 records all multiplicities of 255 and higher.  There is no front panel display, and the unit must
be controlled and read out through a serial interface with a computer.  The Canberra 2150 version
includes a +5V power supply for the Ampteks, but it can only power a limited number.

J . Los Alamos PSR/Aquila PSR-B Multiplicity Shift Register

The Portable Shift Register (PSR) is a small, battery-operated shift register package that
was developed to address applications not covered by the larger existing electronics packages
(Halbig 94).  The PSR makes extensive use of hardware and software developed for the Miniature
Modular Multichannel Analyzer, and includes an upgraded version of the MSR4 multiplicity shift
register.  Commercial versions called the PSR-B were manufactured by Aquila Technologies, Inc.

The PSR is built on the same application-specific programmable logic chips, operated at
4 MHz, as the MSR4 described in Halbig (91).  The coincidence gate width G can be varied from
0.25 to 1024 µs in steps of 0.25 µs, and the predelay can be varied from 0 to 1023.75 µs in steps
of 0.25 µs.  The long delay between the R+A and A gates is fixed at 4096 µs.  The singles
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counting register is 36 bits deep, and the R+A and A registers are 48 bits deep.  There are 256
multiplicity registers for the R+A gate and 256 for the A gate, all of which are 32 bits deep.  This
provides the PSR with the ability to operate at high count rates for long counting periods without
overflowing the registers that collect the multiplicity distribution.  Two auxiliary scalers, each 40
bits deep, are available to process additional  information.  The PSR also includes +5V and +200–
2000V power supplies to operate the multiplicity counter’s 3He tubes and Amptek electronics.  The
+5V power supply can only power a limited number of Ampteks.

K . Canberra JSR-14 Multiplicity Shift Register

The Canberra JSR-14 is a compact multiplicity shift register based on the Los Alamos
MSR4 and Canberra 2150 modules.  It is built into the same small case as the Canberra InSpector
multichannel analyzer.  The JSR-14 has an on/off indicator light and a HV on/off indicator light,
but like its predecessors it is controlled and read out through a serial interface with a computer.
The unit includes an additional totals counter, and a burst pulser for diagnostics.

L . Los Alamos PATRM List Mode Module

Another approach to multiplicity electronics is to use a time correlation analyzer to collect all
of the time intervals between the incoming pulses as they arrive.  The Pulse Arrival-Time
Recording Module (PATRM) was developed at Los Alamos National Laboratory for a variety of
applications (Arnone 92).  These include neutron multiplicity analysis, deadtime and diagnostic
studies, delayed neutron counting, analysis of critical systems, and time-dependent multiplicity
measurements during neutron interrogation.  It is commercially available through BNFL
Instruments for multiplicity analysis of waste drums.

The PATRM is a computer-automated measurement and control ( CAMAC) module capable
of recording the arrival time of up to 4 million pulses.  The result is a list of 32-bit binary numbers
that represents the pulse arrival time, scaled with a 10-MHz clock.  This information can be
processed by the computer in a variety of ways, including phantom shift register analysis with
different gate width choices, or randomly triggered signal analysis (Feynman Variance) (Brunson
97).  For example, large bursts of pulses due to cosmic-ray events can be identified and deleted
from the analysis.  At the present time, the PATRM is best suited for low and moderate count rate
applications because the computer will require some time to process and analyze the collected
pulses after every 4 million pulses.  An updated version of the PATRM is under development that
will incorporate a 100-MHz clock and label each pulse with the channel from which it came
(Arnone 96).  This version will be configured as a single PC card installable in any high-
performance, IBM-type computer.
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V . Multiplicity Mathematics

A . Overview

This section provides equations for 240Pu mass and other sample parameters in terms of the
neutron time distributions that can be measured with a multiplicity counter.  The starting point for
these equations is the spontaneous fission process in plutonium, which provides the assay
signature for multiplicity counting as it does for conventional coincidence counting.  Section B
provides the background information on this process that is needed for the derivations.  Most
plutonium samples also emit neutrons from (α ,n) reactions with matrix materials, and information
on this reaction is provided in Section C.  Neutrons from either spontaneous fission or (α ,n)
reactions can induce fissions in the sample, and this self-multiplication process is described in
Section D.

The equations are based on certain fundamental assumptions about the fission process and
the sample, which sets limits on their accuracy and range of applicability.  These assumptions are
outlined in Section E.  Then, in Section F, we define the factorial moments that are the
mathematical basis for the equations.

Then we proceed down two separate paths by providing two different sets of equations for
the moments of the correlated neutron distributions produced by spontaneous and induced fissions
in a plutonium sample:

1.  One set of equations describes the correlated moments in terms of the distributions that
can be obtained from the neutron multiplicity counter.  Section G describes the measured
foreground and background distributions.  Then, Section H shows how the actual correlated
distributions can be extracted from them, and how singles, doubles, and triples can be defined in
terms of these correlated moments.

2.  The other set of equations describes the correlated moments in terms of analytical
expressions based on the properties of the sample.  The emitted fission multiplicity distribution is
described in Section I, and the detected distribution in Section J.  The definition of singles,
doubles, and triples in terms of factorial moments is given in Section K.  Then, Section L provides
analytical expressions for the fractions of the correlated events that lie within the coincidence gate
fraction.

The two sets of equations contain everything that we need:  (1) how singles, doubles, and
triples can be extracted from the multiplicity electronics, and (2) how singles, doubles, and triples
reflect the sample properties.  Then Section M provides the final solutions for 240Pu mass, self-
multiplication, and (α ,n) reaction rate.  An alternative solution for 240Pu mass, (α ,n) reaction rate,
and detector efficiency is given in Section N.

B . The Spontaneous Fission Process

The primary source of spontaneous fission neutrons in plutonium is usually the isotope
240Pu.  The emitted multiplicity distribution from 240Pu is shown in Figure 5.1.  (Figure 5.1 also
includes the multiplicity distribution for 2-MeV neutron-induced fission in 239Pu.)  The
spontaneous fission neutron yields of the plutonium isotopes and other related nuclides are
summarized in Table 5.1 (Ensslin 91a).  Other multiplicity distributions for both spontaneous and
induced fission will have similar shapes, but different values for the average multiplicity ν.  All of
these distributions can be approximated by a Gaussian distribution centered at ν and having a
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width σ.  A distribution width of 1.08 can be used as an approximation for all isotopes except
252Cf, where 1.21 should be used (Terrell 57).
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Fig. 5.1.  The spontaneous fission multiplicity distribution for 240Pu (solid
bars) and the 2-MeV-neutron-induced induced fission multiplicity distribution
for 239Pu (striped bars).
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Table 5.1. The spontaneous fission neutron yields of the plutonium isotopes and other related nuclides
(from Ensslin 91a).

Isotope
A

Number
of

Protons
Z

Number
of

Neutrons
N

Total
Half-Life

Spontaneous
Fission

Half-Life (yr)

Spontaneous
Fission

Yield (n/s-g)

Spontaneous
Fission

Multiplicity v

Induced Thermal
Fission

Multiplicity v

232Th 90 142 1.41 X 1010 yr >1 X 102' >6 X l0-8 2.14 1.9
232U 92 140 71.7 yr 8 X 10'3 1.3 1.71 3.13
233U 92 141 1.59 X l05 yr 1.2 X 1017 8.6 X 10-4 1.76 2.4
234U 92 142 2.45 X 105 yr 2.1 X l0l6 5.02 X 10-3 1.81 2.4
235U 92 143 7.04 X 108 yr 3.5 X 1017 2.99 X 10-4 1.86 2.41
236U 92 144 2.34 X 107 yr 1.95 X 1016 5.49 X 10-3 1.91 2.2
238U 92 146 4.47 X 109 yr 8.20 X 1015 1.36 X 10-2 2.01 2.3
237Np 93 144 2.14 X 106 yr 1.0 X 1018 1.14 X 10-4 2.05 2.70
238Pu 94 144 87.74 yr 4.77 X 10'° 2.59 X 103 2.21 2.9
239Pu 94 145 2.41 X 104 yr 5.48 X 10'5 2.18 X 10-2 2.16 2.88
240Pu 94 146 6.56X 103 yr 1.16X 1011 1.02X 103 2.16 2.8
241Pu 94 147 14.35 yr (2.5 X 1015) (5 X 10-2) 2.25 2.8
242Pu 94 148 3.76 X 105 yr 6.84 X 1010 1.72 X 103 2.15 2.81
24lAm 95 146 433.6 yr 1.05 X 1014 1.18 3.22 3.09
242Cm 96 146 163 days 6.56 X l06 2.10 X 107 2.54 3.44
244Cm 96 148 18.1 yr 1.35 X 107 1.08 X 107 2.72 3.46
249Bk 97 152 320 days 1.90 X 109 1.0 X 105 3.40 3.7
252Cf 98 154 2.646 yr 85.5 2.34 X 1012 3.757 4.06

The 240Pu distribution, normalized to one, is tabulated in Table 5.2 (Ensslin 91b, Boldeman
85, Holden, Zucker 84) along with the spontaneous fission distributions for the minor fertile
isotopes 238Pu and 242Pu and the reference material 252Cf.  For completeness, Table 5.2 includes
242Cm and 244Cm, and the induced fission multiplicity distribution for 239Pu at thermal energies
(0.025 eV) and fission spectrum energies (2 MeV) (Zucker 86).

Table 5.2.  Spontaneous and induced fission multiplicity distributions.

P(ν)
238Pu s.f. 240Pu s.f. 242Pu s.f. 242Cm s.f. 244Cm s.f. 252Cf s.f. 239Pu .025

eV

239Pu 2
MeV

0 0.054 0.066 0.068 0.021 0.015 0.002 0.011 0.006
1 0.205 0.232 0.230 0.147 0.116 0.026 0.099 0.061
2 0.380 0.329 0.334 0.327 0.300 0.127 0.275 0.227
3 0.225 0.251 0.247 0.327 0.333 0.273 0.327 0.326
4 0.108 0.102 0.099 0.138 0.184 0.304 0.205 0.259
5 0.028 0.018 0.018 0.037 0.043 0.185 0.073 0.096
6 0.002 0.003 0.003 0.009 0.066 0.010 0.022
7 0.001 0.015 0.001 0.003
8 0.002 0.001

ν1
2.21 2.156 2.145 2.540 2.720 3.757 2.876 3.163

ν2
3.957 3.825 3.794 5.132 5.939 11.962 6.748 8.240

ν3
5.596 5.336 5.317 8.036 10.101 31.812 12.589 17.321
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Table 5.2 shows that the actual number of neutrons emitted in each fission can vary from
0 to 6, or more depending on the kinematics of the fission process.  These multiplicity distributions
are normalized to 1, and have a mean value ν1:

P( )
max

ν
ν =
∑ =

0

1 and ν ν ν
ν

P( )
max

=
∑ =

0
1    . (5-1)

Also, the first three factorial moments ν1, ν2  and ν3 of these multiplicity distributions (defined in
Section F below) are tabulated at the bottom of Table 5.2.

For 240Pu, the average number of neutrons emitted per spontaneous fission, or the mean
multiplicity ν1, is 2.156.  From the 240Pu spontaneous fission yield of 1020n/s-g in Table 5.1, and
the mean spontaneous fission multiplicity of 2.156, we can deduce that 240Pu has a spontaneous
fission rate F of about 473 fissions/s-g.  The spontaneous fission neutron energy spectrum follows
a Maxwellian distribution and has an average energy of about 1.96 MeV for 240Pu and 2.14 MeV
for 252Cf.

C . Description of (α ,n) Reactions

Many heavy nuclei, including the odd and even isotopes of plutonium, decay by alpha
particle emission as well as by spontaneous fission.  Table 5.3 (Ensslin 91a) summarizes the alpha
decay half-lives and yields for these nuclei.  From Tables 5.1 and 5.3 we see that, in fact, alpha
decay is a much more common decay mode than spontaneous fission, even for the heaviest nuclide
on the list, 252Cf.
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Table 5.3. Summary of alpha decay half-lives and yields of the plutonium isotopes and other related
nuclides (from Ensslin 91a).

Isotopic

A

Total

Half-Life

Alpha

Decay

Half-Life

Alpha

Yield

(α /s-g)

Average

Alpha

Energy

(MeV)

(α ,n)

Yield in

Oxide

(n/s-g)

(α ,n)

Yield in

UF6/PuF4

(n/s-g)
232Th 1.41 X 1010yr 1.41 X 1010yr 4.1 X 103 4.00 2.2 X 10-5

232U 71.7 yr 71.7yr 8.0 X 1011 5.30 1.49 X 104 2.6 X 106

233U 1.59 X 105 yr l.59 X 105 yr 3.5 X 108 4.82 4.8 7.0 X 102

234U 2.45 X 105 yr 2.45 X 105 yr 2.3 X 108 4.76 3.0 5.8 X 102

235U 7.04 X l08 yr 7.04 X l08 yr 7.9 X 104 4.40 7.1 X 10-4 0.08
236U 2.34 X 107 yr 2.34 X 107 yr 2.3 X 106 4.48 2.4 X 10-2 2.9
238U 4.47 X 109 yr 4.47 X 109 yr 1.2 X 104 4.19 8.3 X 10-5 0.028
237Np 2.14 X 106 yr 2.14 X 106 yr 2.6 X 107 4.77 3.4 X 10-1

238Pu 87.74 yr 87.74 yr 6.4 X 1011 5.49 1.34 X 104 2.2 X106

239Pu 2.41 X 104 yr 2.41 X 104 yr 2.3 X 109 5.15 3.81 X 101 5.6 X 103

240Pu 6.56 X 103 yr 6.56 X 103 yr 8.4 X 109 5.15 1.41 X 102 2.1 X 104

24IPu 14.35 yr 5.90 X 105 yr 9.4 X 107 4.89 1.3 1.7 X 102

242Pu 3.76 X 105 yr 3.76 X 105 yr 1.4 X 108 4.90 2.0 2.7 X 102

241Am 433.6 yr 433.6 yr 1.3 X 1011 5.48 2.69 X 103

242Cm 163 days 163 days 1.2 X 1014 6.10 3.76 X 106

244Cm 18.1 yr 18.1 yr 3.0 X 1012 5.80 7.73 X 104

249Bk 320 days 6.1 X 104 yr 8.8 X 108 5.40 1.8 X 101

252Cf 2.646 yr 2.731 yr 1.9 X 1013 6.11 6.0 X 105

The alpha particles emitted by plutonium have an average energy of about 5.2 MeV, and the
ones emitted by uranium have an average energy of about 4.7 MeV.  Alpha particles in this energy
range have a very short range, and they will not escape from even the thinnest plutonium sample
cans.  However, they can have a tremendous effect on the detected neutron count rate.  This is
because the flux of alpha particles present in the sample can lead to (α ,n) reactions in low-Z matrix
materials that may be present, including oxygen, water, fluorine, etc.  Whether the reaction can
occur depends on the initial energy of the emitted alpha particle, the reaction Q-value, the required
threshold energy, and the Coulomb barrier.  These parameters are summarized in Table 5.4
(Ensslin 91a) for the low-Z elements that can undergo (α ,n) reactions.
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Table 5.4. Reaction Q-values, threshold energies, and coulomb barriers for the low-Z elements that
undergo (α,n) reactions (from Ensslin 91a).

Nucleus Natural
Abundance

(%)

Q-Value
(MeV)

Threshold
Energy
(MeV)

Coulomb
Barrier
(MeV)

Maximum Neutron
Energy for

5.2-MeV Alpha
4He 100 -18.99 38.0 1.5
6Li 7.5 -3.70 6.32 2.1
7Li 92.5 -2.79 4.38 2.1 1.2
9Be 100 +5.70 0 2.6 10.8
10B 19.8 +1.06 0 3.2 5.9
11B 80.2 +0.16 0 3.2 5.0
12C 98.9 -8.51 11.34 3.7
13C 1.11 +2.22 0 3.7 7.2
14N 99.6 -4.73 6.09 4.1
15N 0.4 -6.42 8.13 4.1
160 99.8 -12.14 15.2 4.7
170 0.04 +0.59 0 4.6 5.5
180 0.2 -0.70 0.85 4.6 4.2
19F 100 -1.95 2.36 5.1 2.9

20Ne 90.9 -7.22 8.66 5.6
21Ne 0.3 +2.55 0 5.5 7.6
22Ne 8.8 -0.48 0.57 5.5 4.5
23Na 100 -2.96 3.49 6.0 1.8

24Mg 79.0 -7.19 8.39 6.4
25Mg 10.0 +2.65 0 6.4 7.7
26Mg 11.0 +0.03 0 6.3 5.0
27Al 100 -2.64 3.03 6.8 2.2
29Si 4.7 -1.53 1.74 7.2 3.4
30Si 3 1 -3.49 3.96 7.2 1.4
37Cl 24.2 -3.87 4.29 8.3 1.0

If the total neutron emission rate due to (α ,n) reactions is Nα, we can define the ratio of (α
,n) neutrons to spontaneous fission neutrons by

α =
Nα

Nsf

=
Nα

Fν s

    . (5-2)

For pure plutonium metal samples, α=0.  For oxides and fluorides, the (α ,n) reaction yields are
summarized in Table 5.3.  From these yields, we can compute α  for samples of pure plutonium
oxide (with americium in remove gap growth) from the following equation:

α = + + + + +
+ +

13400 38 1 141 1 3 2 0 2690

1020 2 54 1 69
238 239 240 241 242 241

238 240 242

f f f f f f

f f f
Am. . .

( . . )
      . (5-3)

The (α ,n) yield in other plutonium or uranium compounds, or in samples that contain other low-Z
elements mixed in as impurities, can be computed from Eqs. 11.5 through 11.7 in (Ensslin 91a).
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Table 5.5 (Ensslin 91a) summarizes thick target (α ,n) yields in common elements, and the average
energy of the neutrons that are emitted.  From Table 5.5 we can see which low-Z elements are
most likely to significantly increase the neutron emission rate of the sample.

Table 5.5.  Thick target yields from the low-Z elements that can undergo (α ,n)
reactions (error bars estimated from scatter between different experiments
(from Ensslin 91a).

Element
(Natural
Isotopic

Composition)

Neutron Yield
per 106 Alphas

of Energy
4.7 MeV (234U)

Neutron Yield
per 106 Alphas

of Energy
5.2 MeV

Av. Neutron
Energy (MeV)
for 5.2 MeV

Alpha
Li 0.16 ± 0.04 1.13 ± 0.25 0.3
Be 44 ± 4 65 ± 5 4.2
B 12.4 ± 0.6 17.5 ± 0.4 2.9
C 0.051 ± 0.002 0.078 ± 0.004 4.4
O 0.040 ± 0.001 0.059 ± 0.002 1.9
F 3.1 ± 0.3 5.9 ± 0.6 1.2
Na 0.5 ± 0.5 1.1 ± 0.5
Mg 0.42 ± 0.03 0.89 ± 0.02 2.7
A1 0.13 ± 0.01 0.41 ± 0.01 1.0
Si 0.028 ± 0.002 0.076 ± 0.003 1.2
Cl 0.0l ± 0.01 0.07 ± 0.04

Of course, the goal of neutron multiplicity counting is to provide an accurate assay
independent of the sample’s (α ,n) yield and to provide a value for α  without other available
information.  However, we should be aware of the fact that samples with α>0 may have a neutron
energy spectrum different from the expected spontaneous fission neutron energy spectrum.
Fortunately, for the most common element present, oxygen, the average energy of the (α ,n)
neutrons is 2.03 MeV, very close to the average of the spontaneous fission neutrons, 1.96 MeV.

D . Definition of Sample Multiplication

This section describes the sample self-multiplication or induced fission process, which can
occur with neutrons from either spontaneous fission or (α ,n) reactions.  When one of these
neutrons induces another fission in the sample, a multiplication event has occurred.
Neutron-induced fission is the most common multiplication event, but other reactions such as
(n,2n) can also be present.  Some of the neutrons in the sample may be captured without causing
the release of any neutrons, as in (n,γ) or (n,p) reactions.  Or, neutrons may eventually leak out of
the sample without undergoing any interactions.  Based on the discussion in (Stewart 91), we can
define the following quantities:

νi = the average number of neutrons created by induced fission,
p  = probability that a neutron will induce a fission
pC = probability that a neutron will be captured without producing any

new neutrons
pL = probability that a neutron will escape the sample (leakage

probability).
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If we neglect any neutron-producing reactions other than fission, then p + pC + pL = 1.  A neutron
can induce a fission with probability p and disappear with probability (1-p).

The total multiplication MT is the total number of neutrons that exist in the sample divided by
the number of neutrons that were started.  If 100 neutrons are started in the sample and an
additional 59 are created by multiplication events, M=1.59.  Only a fraction of the first generation
of 100 neutrons produces additional neutrons through multiplication; the others either leak from the
sample or are captured without producing neutrons.  The same fraction of the second generation
produces a third generation, and so on.  The number of neutrons in the sample decreases steadily
to zero, and the total number of neutrons created by all the multiplication events is 59.

The multiplication factor k relates the number of neutrons in successive generations.  If the
sample is infinitely large, the multiplication factor is written as k and is defined as the ratio of the
number of neutrons in one generation to the number in the previous generation.  If the sample is
not infinitely large, some neutrons in each generation may leak out of the sample.  The
multiplication factor for this more practical situation is called keff, or just “k” for brevity.  It is
defined as the ratio of the number of neutrons produced in one generation to the number either
absorbed or leaked in the preceding generation.

The total multiplication MT can be related to the multiplication factor k, provided that k is
less than 1, by adding together all the neutrons in all the generations and summing the series.  This
process can be expressed quantitatively, with the multiplication factor k given by pνi.  For all
generations, the sum of the number of neutrons created per initial source neutron is the total
multiplication MT.
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We also define another quantity called the net leakage multiplication ML.  This term reflects the fact
that not all of the new neutrons produced by induced fissions will escape from the sample, instead
some will be captured within the sample.  ML is always less than or nearly equal to MT, depending
on the value of p.  Under the assumption that the probability of neutron capture in the sample
without fission is small, which is usually true, the leakage multiplication ML is approximately
given by (1 - p) MT.  Then we can use the following approximate relationship for the net leakage
multiplication:

M = 1 − p

1− pν i

    . (5-5)

Here we have dropped the subscript L, and for the rest of this report we will just use M
for the leakage multiplication.  This is the appropriate quantity for neutron multiplicity counting
because the leakage multiplication is the measure of the neutrons that leak out of the sample and are
available for detection in the counter.  For actual samples, νi, p, and pC depend on the neutron
energy spectrum in the sample, the sample composition, and the sample density.  For example,
from Table 5.2, the mean value for the induced fission neutron multiplicity νi1 = 2.876 for thermal
neutron induced fission, whereas νi1 = 3.163 for fast fission neutron (about 2 MeV average
energy) induced fission.  The probabilities p and pC also depend on sample geometry and on the
reflection of neutrons back into the sample from the well counter.  Thus the leakage multiplication
M depends on all of these parameters, and the value of M that is of interest to neutron coincidence
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counting is the multiplication observed with the sample inside the counter rather than the M of the
sample in an unreflected geometry.

Although the leakage multiplication varies from sample to sample and affects the measured
coincidence response, there is no direct means of determining M for an unknown sample.  It may
be calculated by Monte Carlo codes, it may be estimated from the observed doubles to singles ratio
(Ensslin 85), or it may be calculated from the observed triples to doubles ratio using the
multiplicity equations derived in this chapter.  Another way to obtain an estimate for M is from the
geometry of the sample.  The fission probability p is proportional to the product of the 239Pu-
effective density ρ and the mean chord length in the sample (Langner 93).  All of these methods
will provide a value for the combined M of the sample and detector averaged over the neutron
energy spectrum.  In practice, it is not always valid to assume that M is constant across the sample.
For irregular samples with lumps of plutonium, the average neutron response observed outside the
sample may not be a true guide to how much the probability of fission, or the net neutron worth,
varies within the sample and how much the correlated neutron response is affected.

Not only does the well counter affect the sample multiplication, but sample multiplication
itself affects the coincidence response of the well counter.  As the leakage multiplication M
increases, the neutron die-away time of the counter increases because the neutrons that induce
fissions create a new source of neutrons.  When the die-away time changes, the fraction of
coincidence events accepted by the coincidence electronics also changes.  The magnitude of the
effect depends strongly on whether or not the detector well is lined with cadmium.  If it is not,
thermal neutrons (which are the slowest neutrons and the ones with the highest fission cross
section) can readily return to the sample and cause fissions.  An expression for the increase in the
detector die-away time has been derived by Boehnel for a thermal system with no cadmium liner
(Boehnel 75):
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If the detector well is lined with cadmium, thermal neutrons cannot return to the sample, and the
increase in die-away time is small and usually negligible.

Because the ratio of triples to doubles is a strong measure of multiplication, we exploit this
effect to determine M in neutron multiplicity counting.  The higher source multiplicities for the
sample with neutron multiplication produce a higher coincidence gate multiplicity and therefore a
higher triples rate.  An example is shown in Table 5.6.  The emitted neutron multiplicity
distribution is shown for spontaneous fission in 240Pu, and for spontaneous fission of 240Pu plus
induced fission in 239Pu with a multiplication of 1.04 (i.e., the induced fissions increase the
neutron output by 4%—a typical value for a few hundred grams of plutonium oxide).  We observe
that the emitted neutron distribution is shifted towards higher multiplicities, which increase the
doubles (ν2) more that the singles (ν1), and the triples (ν3) much more than the doubles.



50

Table 5.6. Example of the change in the neutron multiplicity
distribution at M=1.04.

P(ν ) 240
Pu spontaneous fission

only

240
Pu spont. fiss. +

239
Pu induced fission:

(M = 1.04)

0 0.066 0.066
1 0.232 0.227
2 0.329 0.318
3 0.251 0.242
4 0.102 0.101
5 0.018 0.025
6 0.002 0.010
7 0 0.005
8 0 0.003
9 0 0.002

10 0 0.001

ν 1 2.156 2.240
ν 2 3.825 4.712
ν 3 5.336 10.362

E . Assumptions in the Equations

The equations given later in this part of the guide are based on some important assumptions
and mathematical models about the process of neutron emission and detection.  To the extent that
the theoretical model matches the plutonium samples, the measured singles, doubles, and triples
rates provide an exact solution for the effective 240Pu mass, the multiplication M, and the (α ,n)
fraction α .  To the extent that the model is not a perfect match, we can expect to encounter some
biases or limitations in the multiplicity technique.  In this regard, the following assumptions are
important to remember:

(1) It is assumed that all induced fission neutrons are emitted simultaneously with the
original spontaneous fission or (α ,n) reaction, independent of the length of the fission chain.  This
assumption is called the superfission concept (Boehnel 85).  Because of the very short time scale
of the fission process relative to the neutron die-away time in the well counter, this is a good
assumption except for those neutrons that re-enter the sample from the counter (reflected neutrons)
and induce fissions, as discussed in the previous section.

(2) It is assumed that the neutron detector efficiency and the probability of fission are
uniform over the sample volume.  This assumption is called the “point model” because it is
equivalent to assuming that all neutrons are emitted at one point in the sample.  The assumption of
constant efficiency is not always valid, but is becoming easier to achieve with the new multiplicity
counters that are designed to have a flat efficiency profile across the sample volume.  The
assumption of constant fission probability only works for samples that are dilute or thin with
respect to the neutron mean free path, such as oxides.
 (3) It is assumed that (α ,n) neutrons and spontaneous fission neutrons have the same
energy spectrum, so that the detection efficiency ε, the fission probability p, and the induced-
fission multiplicity νi are the same for both neutron sources.  This assumption is not valid for most
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(α ,n) neutron sources such as those from fluorine, magnesium, lithium, and carbon, although for
plutonium oxide the (α ,n) and spontaneous fission neutrons have similar mean energies but
different spectrum shapes.  Boehnel (85) has outlined the process for re-deriving the multiplicity
distribution moments if ε and p are different, but the resulting equations are very complex.  In
practice, the best approach is to design the multiplicity counter so that its detection efficiency is as
nearly energy independent as possible, as was discussed in Part II.

(4) It is assumed that neutron capture without fission is negligible, so that Eq. 5.5 can be
used for the net leakage multiplication M.

(5) It is assumed that the distributions of neutron multiplicity and neutron energy emitted in
each fission are not correlated.  In other words, if the number of neutrons emitted in a fission is
above average, will the mean neutron energy be below average?  The available evidence indicates
that the mean neutron emission energy is approximately constant and that the number of neutrons
increases with the available energy (Gavron 74).

(6) It is assumed that the neutron die-away time in the sample/detector combination is well
approximated by a single exponential time constant.  This is not always the case, especially for
drum-sized multiplicity counters, which often appear to have two observable decay constants.
This effect is not serious, and can be compensated for during the calibration process.  The
equations required to adjust the observed double and triple coincidences for a dual decay mode die-
away time are given by Pickrell (97b).

F . Definitions of the Multiplicity Distributions and Moments

Keeping track of the different multiplicity distributions used for data analysis is not for the
faint-hearted!  The following list defines all of the distributions used later.  Note that we take pains
to define different distributions depending on whether the trigger event is one of the detected
neutrons or is just chosen randomly or periodically, whether the trigger event is a fission neutron
or not and whether the neutrons that follow the trigger are correlated to it or not.

P(ν)  = Distribution of neutrons emitted in a fission.  If (α , n) neutrons are defined as fissions
with ν=1, then they can be included in P(ν).

D(n)  = Distribution of detected neutrons.  If the neutron detection efficiency ε=1, then D(n) would
be equal to P(ν).

f(i)   = Distribution of signal-triggered measured events, i.e., neutrons that are detected and
counted in the gate interval following any trigger.  This is the measured foreground, or
R+A distribution.  This distribution is called P(i) in the neutron coincidence counter
(NCC) software code and in (Krick 85 and 93).

g(i)   = Distribution of fission-signal-triggered measured events, i.e., neutrons that would be
detected and counted in the gate interval following a trigger that came from a fission event.

b(i)   = Distribution of randomly-triggered measured events, i.e., neutrons that are detected and
counted in the gate interval following a random or periodic trigger.  This is the measured
background or A distribution.  This distribution is called Q(i) in the NCC software code
and in (Krick 85 and 93).

r(i)   = Distribution of correlated neutrons that are detected and counted following a signal trigger.
s(i)   = Distribution of correlated neutrons that are detected and counted following a random or

periodic trigger.
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We will define all distributions to be normalized to 1, as in Eq. (5.1).
The same statistical information can be described equivalently using either a probability

distribution or the factorial moments of that distribution.  Analytical expressions for the factorial
moments νk of the neutron multiplicity distribution emitted by a multiplying sample have been
derived (Boehnel 85 and Hage 85).  We will work with the first three factorial moments of the
distributions, which are given by:
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where P(ν) is the probability of obtaining an event with multiplicity ν.  The general expression for
a factorial moment is the following:
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It is also common to work with reduced factorial moments, which add a term k! to the denominator
which comes from combinatorial analysis and corrects for the multiple counting effects that can
occur by considering all possible combinations of identical neutrons.  Multiplicity analysis can be
done either way, but in the derivations below we will usually work with the regular factorial
moments.

(We note in passing that there is an alternative approach to moments analysis.  Multiplet
analysis, as developed by Bondar (96) and Dierckx and Hage (NSE 85, 1983), uses separate
equations for the emitted and measured events for each correlated multiplet r(i) and s(i)—the
number of events of multiplicity i that are measured.  We will use moments analysis instead
because the moments yield solutions for F, M, and α  in closed form, whereas the multiplet
approach requires an iterative procedure.  The moments approach also yields equations that are
linear in F).

G . The Measured Foreground and Background Multiplicity Distributions

We need to extract values for S, D, and T from the multiplicity shift register covered in Part
IV of this guide.  As described there, this electronics package measures the detected and counted
foreground multiplicity distribution in the R+A gate, and the background distribution in the A gate.
The measured foreground distribution is called f(i) or P(i), and the background distribution is
called b(i) or Q(i).  As the designation R+A implies, the foreground distribution is actually a
combination of the real correlated multiplicity distribution R mixed with the accidental multiplicity
distribution A.  Thus the observed distributions can be very complex, as illustrated in the examples
below.
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Table 5.7 (same as Table 4.1) lists the multiplicity distribution for a real 60-g plutonium
oxide sample measured in a multiplicity counter with roughly 56% neutron detection efficiency.
Table 5.8 lists the multiplicity distribution from a 3.8-kg plutonium metal sample, and Fig. 5.2 is a
histogram of that distribution.  These multiplicity distributions describe the probabilities of
counting events of a given multiplicity in the R+A and A gates.  The higher the singles rate, the
longer the distributions will be.  The average multiplicity of the background distribution depends
on this rate and on the coincidence gate width and is given by SG.

Table 5.7. Neutron multiplicity distribution from a real 60-g
plutonium oxide sample measured in a multiplicity counter with
roughly 56% neutron detection efficiency.

                                R+A                                A

0 26804360 29731130

1 8187530 6222207

2 1772831 1016603

3 325270 157224

4 53449 22387

5 8231 3093

6 1237 402

7 183 42

8 30 8

9 2 1

10 0 0

11 0 0

12 0 0



54

Table 5.8. Neutron multiplicity distribution from a 3.8-kg plutonium metal sample measured in a multiplicity
counter with roughly 56% neutron detection efficiency.

            R+A  A            R+A  A R+A A

0 1347503 2342585 23 377424 182845 45 71 26

1 5548119 8741608 24 261832 123318 46 44 14

2 12594691 18155789 25 180734 82901 47 18 6

3 20880464 27689521 26 125053 55343 48 20 3

4 28286672 34717294 27 86088 37277 49 19 6

5 33227391 37930829 28 58758 24837 50 16 4

6 35076936 37377198 29 40354 16862 51 10 1

7 34113057 34051848 30 27484 11242 52 4 1

8 31095848 29187102 31 18999 7693 53 10 2

9 26937850 23810063 32 13004 5203 54 11 2

10 22383998 18699047 33 8553 3265 55 3 1

11 17975050 14233768 34 5759 2253 56 5 0

12 14036174 10551271 35 3995 1522 57 2 0

13 10708296 7661030 36 2612 988 58 3 0

14 8021716 5469190 37 1860 714 59 0 0

15 5913582 3856263 38 1291 417 60 1 1

16 4308170 2691844 39 912 313 61 0 0

17 3104553 1858200 40 602 205 62 1 0

18 2216044 1273803 41 406 122 63 1 0

19 1567713 869397 42 237 74 64 0 0

20 1107785 592481 43 154 49

21 776274 398955 44 112 28

22 541207 270021
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Fig. 5.2.  Multiplicity distribution for a 3.8-kg plutonium metal sample measured
in a 56% efficient neutron multiplicity counter.

Figures 5.3 and 5.4 compare the multiplicity distributions for an AmLi neutron source and
for a large 252Cf neutron source.  Because the AmLi source emits only single, random neutrons
from (α ,n) reactions, the R+A and A distributions in Fig. 5.3 are identical.  In Fig. 5.4, we see
that the presence of real or correlated neutrons from californium shifts the R+A distribution to
higher multiplicities than the A distribution, but that the difference is small.



56

0 1 2 3 4 5
0.00e+0

1.00e+6

2.00e+6

3.00e+6

4.00e+6

5.00e+6

Multiplicity

C
ou

nt
s

Counts in R + A Gate
Counts in A Gate

Fig. 5.3.  Multiplicity distribution for an AmLi random neutron source measured
in a 56% efficient neutron multiplicity counter.
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Fig. 5.4.  Multiplicity distribution for a large 252Cf neutron source measured
in a 56% efficient neutron multiplicity counter.
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H . Extraction of the Correlated Multiplicity Distributions

In Section G we saw that the foreground distribution is actually a mixture of the real
correlated multiplicity distribution R and the accidental multiplicity distribution A.  Also, it's true
that the measured foreground distribution is produced by trigger events that can be fission events
or background events.  This means that an unfolding process is needed to extract the information
that we really want—the distribution r(i) of correlated neutrons that are detected and counted
following a fission trigger.

First, we correct for the presence of accidental triggers.  The total trigger rate is the singles
rate S = Fεν + Sbkg, where the fission trigger rate is Fεν.  Then the measured foreground moments
are
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where gk are the moments of the distribution g(i) of measured events that follow a fission trigger.

Second, to correct for accidental coincidences, note that g(i) is a convolution of r(i) and
b(i):

g(0)  =  r(0)b(0),
g(1)  =  r(0)b(1)  +  r(1)b(0),
g(2)  =  r(0)b(2)  +  r(1)b(1)  +  r(2)b(0), etc.

If we sum up these distributions in moments form, we obtain the relationship
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Combining Eqs. 5.11 and 5.12 yields the following equation for the moments rk (with r0 = 1
because the distribution is normalized to 1):
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The first three correlated moments rk, multiplied by the sample trigger rate (S - Sbkg), are the
singles, doubles, and triples that we are looking for:

Singles = (S − Sbkg)r0 = S (5-14)

Doubles S S r S f bbkg= − = −( ) ( )1 1 1 (5-15)

Triples = (S − Sbkg)r2 / 2!= S( f2 − b2 − 2b1( f1 −b1)) / 2 (5-16)

Note that the doubles are the difference between the first moment of the multiplicity distribution in
the foreground (R+A) gate and the first moment of the multiplicity distribution in the background
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(A) gate, as expected from the way that the shift register operates.  The triples equation is not so
intuitively obvious because of the cross terms.

The procedure for obtaining the moments sk of the randomly triggered correlated
distribution is similar, except that there is no need to correct b(i) for accidental triggers.  Assume
that the total trigger rate is still S, so that there is one delayed random trigger for every foreground
trigger.  The expression for the moments sk is given by Hage (85):
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The first three moments are

s0 = 1,
s1 =  b1,
s2 =  b2 - b1

2.
s3 =  b3 - 3 b1 b2 + 2 b1

3    . (5-18)

The first moment of the measured background distribution is b1 = SG.
It is not as commonly known, but it is also possible to write down equations for singles,

doubles, and triples using only the background-triggered moments, as in the Feynman variance
approach (Robba 83).  For completeness, these are listed below:

Singles = Ss0 = S (5-19)

Doubles = SE1

GεW2

(b2 − b1
2 ) (5-20)

Triples = SE2

Gε 2W3

(b3 −3b1b2 +2b1
3 ) (5-21)

Here, ε is the neutron detection efficiency, and the coincidence gate fractions Ek and Wk are defined
in Section K below.

I . The Emitted Fission Multiplicity Distribution

For samples that emit both spontaneous fission and (α ,n) neutrons, we can define a
combined multiplicity distribution by considering (α ,n) reactions as a fission source that always
emits one neutron.  The combined distribution of both (α ,n) and spontaneous fission neutrons is
given by

P(ν) =
αν sδ1ν + Psf (ν)

1+ αν s

    , (5-22)

where δlν = 1 if ν=1 and 0 otherwise.

With this definition of the emitted multiplicity distribution for actual samples, the first three
factorial moments are given by
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v1 = Mνs1(1+α ) , (5-23)

v M v
M

v
v vs

i

s i2

2

2

1

1 2

1

1
1= + −

−






+








( )α , and (5-24)

v M v
M

v
v v v

M

v
vs

i

s i s i

i

s i3

3

3

1

2 2 1 3

1

2

1 2

21

1
3 1 3

1

1
1= + −

−






+ +[ ] + −
−







+











ν α ν α( ) ( )     . (5-25)

These equations were derived independently by Boehnel (85) and Hage (85) based on the point
model and other assumptions described in Section E.

J . The Detected Multiplicity Distribution

The actual observed multiplicity distribution and its moments will be less than the emitted
moments given in Eqs. 5.23 through 5.25 because the neutron detection efficiency ε of the
multiplicity counter will be less than one.  In terms of the emitted multiplicity distribution P(ν), the
detected distribution D(n) is given by
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The mean of this detected distribution is given by
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which can be derived using the relationship
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Note that in Eq. 5.27, ε and ν are separable.  This important feature is also true for the higher
moments, and makes the equations for singles, doubles, and triples that are given below much
simpler.  However, we are making the point model assumption that the detection efficiency is
constant across the sample.  Also, we are assuming that the detection efficiency for spontaneous
fission and (α ,n) neutrons is the same, as discussed in Section E.

K . The Detected and Counted Multiplicity Distribution

This section provides analytical expressions for the multiplicity distribution of events that
are detected, and then also counted within the coincidence gate width G.  Specifically, we want the
moments rk and sk of the correlated events that are detected and counted.  This section is based on
derivations by Hage (85) and Dytlewski (Ensslin 90a).

To obtain expressions for the signal-triggered correlated moments rk, suppose that a burst
of n neutrons is detected, of which the first is the signal trigger.  Because the gate width is finite,
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only a fraction of all coincidences can be detected.  For a fission that occurs at t=0, the time
distribution of detected neutrons is f(t).  Ideally, this is the Rossi-α  distribution illustrated in
Fig. 4.5.  A simplified schematic is given in Fig. 5.5.  Here the counting interval is the gate length
G, and the predelay is PD.

t t + PD t + PD + G

Fig. 5.5.  Simplified time distribution for signal-triggered events.

The probability of capturing one of the n neutrons in a time interval between t and t+dt is nf(t)dt.
This is the probability of obtaining a first or trigger event.  The probability that a following
neutron, one of the remaining (n-1) detected neutrons, lies in the counting interval (t+PD) to
(t+PD+G) is given by the integral
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Integrating over all time t, the probability of obtaining a trigger and then counting i of the (n-1)
following neutrons in the gate is
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Summing over all possible numbers of detected neutrons n [the maximum i is (n-1), or n ranges
from (i+1) to a maximum N], the total probability of counting i neutrons in the gate after the trigger
is
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The probability r(i) is the signal-triggered correlated multiplicity distribution defined in Section F.
The normalization factor εν is obtained from r0 = 1 and Eq. 5-27.  Using the above equations, and
Eqs. 5-26 and 5-28, we can derive the following expression for the first moment r1:
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The second correlated moment r2 is given by a similar equation:
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Integrating Eqs. 5-32 and 5-33, the correlated moments become
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r2 = ν 3

ν
E2      . (5-35)

E1 and E2 represent the fractions of the signal-triggered correlated events that are detected and
counted:

En = (εf )n

n +1
    . (5-36)

The factor (n+1) in the denominator of Eq. 5-36 results from the ordering of the time integrals
following the trigger.  The same factors appear in the shift register response equations and are
thought of as part of the reduced factorial moments of ν and are considered to correct for double
counting of coincident events.

For a single exponential detector die-away with time constant τ , the gate fraction f  is
given by

f e PD e G= − − −/ ( / )τ τ1     . (5-37)

If the well counter does not have a single die-away time, but has a known efficiency, the gate
fraction can also be obtained experimentally with a californium source or a small non-multiplying
plutonium source, as described under the calibration procedure in Part VI, Section M.

Similar analytical expressions can be derived for the randomly-triggered correlated
moments sk.  Suppose that a fission burst with n detected neutrons occurs at t=0.  As illustrated in
Fig. 5.6, there will be a contribution to the correlated response if a randomly-triggered gate starts
(a) between t=-G and t=0 or (b) between t=0 and t=∞.  The probability that a randomly-triggered
gate will occur between t and t+dt is Sdt.  The probability that one of the n detected neutrons lies in
the counting interval defined by the gate is

q f s dst
t

t G

=
+

∫ ( )     , (5-38)

for time interval (b).  For time interval (a) the lower limit of integration is s=0 rather that s=t.
Integrating over all time intervals in (a) and (b), and summing over all possible numbers of
detected neutrons n, the total probability of counting i neutrons in the randomly-triggered gate is
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The normalization factor is again εν.  The derivation of the first moment s1 is similar to the
derivation of r1:
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The derivation of the second moment s2 is similar, but involves the second moment of D(n) and the
square of the integrals involving qtds:
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The general relationship between the randomly-triggered moments sk and the signal-triggered
moments rk is derived in Cifarelli (86):
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     . (5-42)

The time integral f is given by Eq 5-37 for a single exponential die-away time.  The coefficients Wk

represent the fractions of the randomly-triggered correlated events that are counted and are given by
(Cifarelli 86):
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t = -G t = 0 t t + G

Fig. 5.6.  Simplified time distribution for random-triggered events.
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L . Analytical Definition of Singles, Doubles, and Triples

We can now define the measured singles, doubles, and triples rates from an actual sample
in terms of three equations for the moments of the emitted and counted multiplicity distribution.
Using Eqs. 5-14 through 5-16, Eqs. 5-34 through 5-36, and then Eqs. 5-23 through 5-25, and the
relationship (S-Sbkg)=Fεν, we obtain

S F M s= +ε ν α1 1( ) , (5-44)
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To summarize the variables used,

F = spontaneous fission rate, 473 fission/s-g 240Pu, so that m240 = effective 240Pu mass,
ε = neutron detection efficiency,
M = neutron leakage multiplication,
α  = (α ,n) to spontaneous fission neutron ratio,
fd  = doubles gate fraction,
ft  = triples gate fraction,

νs1, νs2, νs3 = first, second, and third reduced moments of the
spontaneous fission neutron distribution,

νi1, νi2, νi3  = first, second, and third reduced moments of the
induced fission neutron distribution.

The effective 240Pu mass is that mass of 240Pu that would give the same double coincidence
response as that obtained from all the even isotopes in the actual sample:

240Pueff = 2.52238Pu+240Pu +1.68242Pu     . (5-47)

Note that some detected neutrons will not be counted inside the coincidence counting gate interval
G.  This is reflected in the “gate fractions” fd and ft.  For a single exponential die-away time, the
doubles gate fraction fd is just f, and the triples gate fraction ft is f 2, where f is given by Eq. 5-37.
In addition, there will be some single, double, and triple background counts due to room
background.  These are called Sbkg, Dbkg, and Tbkg, but are not included in the equations above.

The singles neutron rate is the first moment of the detected neutron distribution and is
simply the sum of all the single neutrons detected, including spontaneous fission, induced fission,
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and (α ,n) neutrons.  Once background neutrons Sbkg are added to this, S is equivalent to the sum
over all trigger events, either foreground or background (both are the same).

The double coincidence rate is defined as the second moment of the detected and counted
neutron multiplicity distribution, divided by 2! to correct for double counting (i.e., a coincidence
between events 1 and 2 is not considered distinct from a coincidence between events 2 and 1).
This definition of the double coincidence rate is not the only possible definition, but it is the one
appropriate for a circuit like the shift register, described in Part IV above, that collects all possible
pairs between events in a deadtime-free manner.  In Eq. 5-45 above, we can also see the three
sources of double coincidences:  the first term is spontaneous fission, the second term is induced
fissions caused by multiplication of spontaneous fission neutrons, and the third term, proportional
to α , is induced fissions due to multiplication of (α ,n) neutrons.

The triple coincidence rate is defined as the third moment of the detected and counted
neutron multiplicity distribution, divided by 3! to correct for the six possible combinations for a
triple event.  It is not so simple to visualize all of the terms in Eq. 5-46, because there are a number
of two-step processes that can lead to triple coincidences.

M . Final Solution for Sample Mass, Multiplication, α

Now that we have Eqs. 5-44 through 5-46 that relate singles, doubles, and triples to the
unknown sample parameters, and Eqs. 5-14 through 5-16 to obtain singles, doubles, and triples
from the multiplicity shift register, we have all the relationships needed for multiplicity analysis.
For measurements of large mass items in small containers, we can usually consider the neutron
detection efficiency ε to be a known parameter obtained from careful measurement of a californium
reference source.  Then we can solve Eqs. 5-44 through 5-46 for sample 240Pu-effective mass
m240, sample (α ,n) reaction rate α , and sample self-multiplication M.  The solution for M is
obtained first by solving the following cubic equation:

a bM cM M+ + + =2 3 0 , (5-48)

where the coefficients are functions of S, D, and T:
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Once M is determined, then the sample fission rate F is given by
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The second term in the numerator of Eq. 5-52 represents the effect of sample self-interrogation due
to induced fission, which must be subtracted from the emitted doubles to obtain the spontaneous
fission rate.  Once F is obtained, the sample's 240Pu-effective mass m240 is given by

m
F

fissions s gm240 473
=

−( / )
. (5-53)

Also, the sample's (α ,n) reaction rate α  is given by

α
εν

= −S

F Ms1

1 . (5-54)

N . Final Solution for Sample Mass, Detector Efficiency, α

For measurements of low plutonium mass items in large containers, such as waste drums,
the neutron detection efficiency ε may vary from item to item.  This is because matrix materials in
the large waste containers can significantly affect the outgoing neutron energy spectrum.  But in
this situation, it may be a good approximation to assume that sample self-multiplication M equals
1.  Then M can be considered a known parameter, and we can solve Eqs. 5-44 through 5-46 for
sample 240Pu-effective mass m240, sample (α ,n) reaction rate α , and neutron detection efficiency ε.
The multiplicity data analysis algorithms needed to determine other combinations of three sample
parameters were first derived in Cifarelli (86).  For this case, we first use the measured values for
S, D, and T to obtain α :

α ν
ν ν

= −3

2
1

2

2

2

2

1 3

STf

D f
d S

t s s

. (5-55)

Then the sample fission rate is given by
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and the neutron detection efficiency is given by
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VI. Multiplicity Counter Operating Procedures

A . Hardware Installation and Setup

Hardware installation of a neutron multiplicity counter is the same as for a conventional
neutron coincidence counter.  Floor space requirements may be slightly greater because the extra
rings of 3He tubes make the counter larger.  A low-humidity environment is desirable because the
desiccant in the junction box will last longer.  A low ambient neutron background is also better,
because the outer rings of 3He tubes may not be fully shielded.

Depending on the multiplicity electronics packaged being used, it may be necessary to
provide additional electronics modules.  The Los Alamos MSR4 and the Canberra 2150 are
Nuclear Instrument Modules that are operated in a powered NIM bin.  External or additional +5V
or HV power supplies may be needed.  An IBM-type personal computer is required to run the
neutron software analysis package (see Section C below).  Then, the signal and power cables
between the multiplicity counter and the multiplicity module need to be connected, and also the
serial cable from the computer to the multiplicity module.

B . Overview of the NCC Code

The Windows NCC Code (Harker 96) was developed at Los Alamos National Laboratory
as a general-purpose neutron coincidence counting program for DOE facilities.  It was originally
intended for IBM-type personal computers running Microsoft Windows 3.1.  It now also runs
under Windows 95 and Windows NT.  The code includes data collection and analysis algorithms
for passive coincidence counting by several different algorithms, passive multiplicity counting,
active coincidence counting, active minus passive coincidence counting, and active multiplicity
counting.  (Active multiplicity presently determines the neutron multiplication of a uranium item,
but does not determine the uranium mass.)  Release version 1.1 of the code was disseminated to
DOE facilities in 1997 under Office of Safeguards and Security (OSS) funding as a standardized
neutron coincidence software package that would provide consistent, auditable analysis algorithms.
Technology transfer of the code to Canberra Industries, National Nuclear Corporation, and Aquila
Technologies has also been carried out.  Canberra presently offers a commercial Neutron Analysis
Software package (NAS) based on the NCC code that runs under OS-2.

The Windows NCC code includes startup and file transfer, parameter editing, calibration,
data acquisition, and data review menus (Harker 96).  The code provides computer control of the
multiplicity electronics, all of the calculations necessary to do multiplicity analysis including
background and deadtime corrections, calculations of moments from R+A and A distributions,
outlier testing to filter cosmic-ray events, corrections for multiplication, and statistical error
analysis based on population statistics.  A number of measurement control options are included for
quality control tests.  Calibration curves can be developed from within the code using the built-in
Deming least squares fitting program, although this feature is not used for multiplicity calibration.

All measurement results are stored in both database and text files.  Database files can be
saved and restored for transfer between computers, and individual measurement files can be
deleted from the database.  Measurement data and results can be called up for review and printed
out at any time.  Assay results, or singles, doubles, and triples data, can be plotted from a data file.
Assay results can be individually selected and output in comma-separated variable form for input to
spreadsheet programs such as Microsoft Excel.  The operating procedures described in the rest of
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this part of the guide will be based on the NCC code.  A modification and extension of the NCC
code, called the International Neutron Coincidence Counting (INCC) program, has been developed
and may in the future be merged with the NCC code (Krick 98).

C . Software Installation and Setup

The minimum system requirements for use of the NCC code are an IBM-type personal
computer with the following capabilities (Harker 96):

1.  33 MHz 486 processor,
2.  8 Mbytes Random Access Memory (RAM),
3.  100 Mbytes Fixed Disk,
4.  1.44 Mbytes Floppy Disk,
5.  One serial port unless using add-a-source, then two serial ports,
6.  Mouse, and
7.  Microsoft Windows 3.1, Windows 95, or Windows NT.

To install the NCC Windows software under Windows 3.1, turn on the computer, and type
win(enter) from the DOS prompt to get into the Windows operating system.  Insert the Windows
NCC install disk in drive A.  Under the Program Manager, select File/Run.  Type a:install(enter) in
the Run dialog box.

When the install procedure has completed, double click on the NCC icon which will be in
the NCC group.  The program should start up, and display the welcome screen.  Type (enter) and
the main menu will be displayed.  When the program is started you will be warned if the hard disk
is more than 90% full.  If you see this warning, you need to free up some disk space, possibly by
deleting some old measurements.  If the hard disk becomes 95% full, measurement data acquisition
will be disabled.  The installation procedure for Windows NCC will overwrite any existing
versions of the code and its database.  The installation disk can be modified so that a database
containing previously entered values such as detector and calibration parameters will be
automatically loaded when the software is installed (Harker 96).

D . Detector Parameter Setup

Once the NCC Windows code is loaded, select “Password” under “File” and enter the
password to display all menu options.  The code is provided with the default password “carte.”
For the first time setup of the code for multiplicity analysis, there are a number of detector, data
collection, and data analysis parameters that need to be set.  Under the Edit menu, the user can
select the item types to be measured, the analysis methods to be used, and the desired data display
and archiving options.  The initial background values for the singles, doubles and triples rates
should be set to zero, and the initial normalization constant should be set to 1.  The user should
select “QC tests,” i.e., turn the quality-control tests on.  Additional information on these initial
operating procedures will be given in the next few sections.

For the initial detector setup, select “Detector parameters” under “Edit” and enter the needed
parameters.  Table 6.1 is an example of a list of parameters associated with the Five-Ring
Multiplicity Counter described in Part III, Section B. In the “Detector parameter” window, some of
the parameters may be grayed out to indicate that they cannot be set from the computer for the type
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of electronics that are available.  In this case, these parameters are set directly on the electronics
package.

Table 6.1. Example of detector parameter list for the Five-
Ring Multiplicity Counter.

Shift Register Type
Shift Register Serial Port COM1

Predelay (µs) 3

Gate (µs) 64

HV (V) 1680
Deadtime Coefficient A 0.12 x 10-6s

-1

Deadtime Coefficient B
0.00 x 10-12s

-
2

Deadtime Coefficient C 0
Multiplicity Deadtime 35.83 ns

Detector Die-Away Time 49.1 µs
Detection Efficiency 0.533

Doubles Gate Fraction 0.6279
Triples Gate Fraction 0.3582

E . Detector Characterization:  Background

This procedure determines the room background singles, doubles, and triples rates that will
be subtracted from all multiplicity measurements.  The background is measured with all neutron
sources removed from the vicinity of the multiplicity counter to a distance of at least 3 m.  Under
the NCC Windows code, select “Shift register” as the data source.  Select “QC tests,” i.e., turn the
quality-control tests on.  Select “Background” under “Acquire,” and select “Passive” as the well
configuration.  For this measurement, as for most multiplicity counter measurements, the available
count time should be split up into a series of many smaller runs, such as 10 runs of 30 s each for a
total count time of 300 s.  This will allow the outlier test to reject runs with unusually large double
or triple coincidence bursts due to cosmic rays or other interferences.  It is also good to observe the
R+A and A multiplicity distributions directly to see if there are any unusually high multiplicity
values that do not follow a smooth curve.  The singles rate should be in the range of 100 to 1000
counts/s (depending on the expected room background), the doubles rate should be on the order of
a few counts/s, and the triples rate should be on the order of 0.1 count/s.  If they are not, there may
be an electronics problem with the system.

F . Detector Characterization:  Bias

The purpose of the bias or normalization measurement is to provide a reference
measurement to check the multiplicity counter at any future time to ensure that the instrument is
working correctly.  This is done using a 252Cf reference source that will be readily available in the
future.  A bias measurement should be part of a daily measurement control program.  Also, it
should be done during any calibration activities, so that the validity of the calibration can be
checked in the future.
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Position the californium reference source in a reproducible position at the center of the
assay chamber.  Select “Rates” under “Acquire.”  Measure the source long enough so that the
doubles counting statistics error is small.  Record the californium source identification, the doubles
rate, and the date under “Edit/Normalization.”  The NCC code is now set up to do bias tests at any
future time with the reference source.  The detector stability is tested with a bias measurement
under “Acquire/Bias.”  Because the detectors are very stable, the normalization constant is
normally set to 1 (no correction).  If one or more Amptek circuits should fail, but measurements
need to be continued, a bias measurement can be made to set the normalization constant to a value
much different than 1, and all the measurement results will be corrected appropriately.

G . Detector Characterization:  Efficiency

The purpose of this procedure is to determine the neutron detection efficiency of the
multiplicity counter from the measured singles rate of a 252Cf source that has a known neutron
yield.  This step is an excellent diagnostic that tests the total 3He and Amptek electronics chain.
The singles rates from the californium reference source measured in the preceding section is a
convenient choice if the californium source strength is known.

A 252Cf source has a half-life (T1/2) of 2.645 years, so the expected yield (Y ) is

Y Y e
T T= −( )

0

2 1 2ln( ) / /∆     , (6-1)

where ∆T  is the time from the date that the original source strength Y0 was determined.  Ln (2) =
0.6931.  The source should be placed at a reproducible position in the center of the assay chamber.
Select “Rates only” under “Acquire” and measure the source long enough to get good precision.
The detector efficiency ε is determined from the singles count rate, with the singles background
subtracted:

ε =
−S S

Y
bkg     . (6-2)

Note that the efficiency determined with a californium source may be slightly different than the
value needed for multiplicity calibration (see Section M below).

H . Detector Characterization:  Die-Away Time and Gate Width

This procedure verifies that the detector die-away time is as expected, and that the
coincidence gate width G is correctly set for this die-away time.  Under the assumption that the
multiplicity counter die-away is given by a single exponential, the probability of detecting a neutron
in the coincidence gate is proportional to the gate fraction f given by Eq. 5-37.  Remeasure the
252Cf reference source that is in the center of the sample cavity, as in Section F or G above, but
change the gate length by a factor of 2, say from 64 µs to 32 µs.  Select “Rates only” under
“Acquire” and measure the source long enough to get good precision on the doubles count rate.
From Eq. 5-37, the ratio of the doubles at a gate length of 64 µs to the doubles at 32 µs (for the
same predelay, die-away time τ, and measurement time) is
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Solving this equation for τ  gives
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Some drum-sized multiplicity counters may have more than one significant component to their die-
away curves because the distribution of polyethylene and 3He is not uniform throughout the
detector.  Therefore, if the calculation of the die-away time is repeated with other gate lengths, a
somewhat different die-away time may be obtained.

The “optimum gate length” for a given coincidence counter, the gate length that gives the
lowest relative error for coincidence counting, is roughly 1.27τ.  This optimum is a very broad and
shallow minimum so that setting the gate width to the nearest multiple of 2 is usually sufficient.  At
high count rates, it may also be beneficial to set the gate width to a smaller value to reduce deadtime
effects on the triples count rate.

I . Detector Characterization:  Gate Fractions

Because multiplicity counters may have more than one significant component to their die-
away curves, the calibration process described in Section M below does not rely directly on the
gate fraction f  that is determined from the measured die-away time using Eq. 5-37.  Instead, we
empirically determine the actual fractions of the doubles and triples that are counted within the gate
width G.  These doubles and triples “gate fractions” are calculated from the singles, doubles, and
triples rates measured with the 252Cf reference source.  For this procedure, we do not need to know
the strength of the californium source, but we need a source with no multiplication (M=1) and no (
α ,n) reactions (α=0).  Then from Eqs. 5-44 through 5-46 we can obtain the following equations
for the doubles gate fraction fd and the triples gate fraction ft:
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where S, D, and T are the singles, doubles, and triples rates, ε is the efficiency, and νs1, νs2, and ν
s3 are the 1st, 2nd, and 3rd factorial moments of the 252Cf source distribution from Table 5.2:

ν s1 = 3.757,  ν s2 = 11.962, ν s3 = 31.812.
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J . Detector Characterization: Deadtime Coefficients

This section reviews the procedure required to determine the singles, doubles, and
multiplicity deadtimes needed to correct the measured count rates or to verify the coefficients
provided with the counter.  At high neutron count rates, some of the neutron pulses are lost as a
result of detector and electronic deadtime.  If two neutrons are captured too close together, their
pulses overlap and appear as one pulse in the counting circuits.  These effects can occur in the 3He
tubes, in the preamplifier/discriminator circuits, or in the OR-ing circuits that combine the pulses
for input into the multiplicity shift register.  The shift register itself is inherently dead-time free,
with no counts or events lost due to overlap or circuit paralysis.

Because of deadtime, the measured singles and doubles rates are smaller than they would
be if no pulses were lost.  Experimentally, it has been determined (by counting combinations of
strong 252Cf and AmLi sources) that the singles and doubles rates can be corrected for deadtime
according to the following equations:

S S em
Sm

0
4= δ / and (6-7)

D D em
Sm

0 = δ , (6-8)

where 

δ = A+ BSm    . (6-9)

A and B are the deadtime coefficients, the subscript “m” refers to the measured quantity, and the
subscript “0” refers to the quantity corrected for deadtime.  The deadtime coefficients A  and B
depend on the actual multiplicity counter, particularly on the number of 3He tubes per
preamplifier/discriminator circuit.  Examples of values for the deadtime coefficients A and B, and
the multiplicity deadtime, are given in Tables 3-1 and 6-1.

One approach for determining A and B is to very carefully and reproducibly measure
several californium sources of different strengths, and adjust A and B to obtain the same
doubles/singles ratio for all sources.  To use this procedure, the curium and 250Cf impurity content
of the 252Cf sources must be low so that each source should have the same true doubles/singles
ratio.  If so, then the NCC code can be used to reanalyze the 252Cf data using “Acquire Rates only”
with the data source set to “Database,” and obtain A and B by iteration.  Alternatively, one can plot
the expression ln(Dm/Sm) as a function of A and B, and perform a least-squares fit to obtain A and
B.  Using either approach, one can then enter A and B under “Edit/Detector Parameters.”

The complex equations used for correcting the triples count rate needed for multiplicity
analysis are built into the NCC code, as described in Krick (93).  They use a deadtime correction
factor f  given by

f e Sm= ∆
    , (6-10)

where ∆ is a constant deadtime parameter.  Also, two sets of deadtime correction coefficients α i

and βi are defined as follows (Dytlewski 91):



72

α φ
φi

j

i j j

j

i

j
j

j
i= +

−
+







+
− +[ ]

≥
=

−

+∑1
1

1
1

1 1
2

0

2

2

( )

( )
( ) and (6-11)

β α φ
φi i

j

i j j

j

i

j
j j

j
i= − +

−
+







+ +
− +[ ]

≥
=

−

+∑1
1

2
1 2

1 2
3

0

3

3

( )( )

( )
( )      . (6-12)

In these equations, α 1 = 1, β2 = α 2 -1, and φ = ∆/G, where G is the gate length.  From these two
sets of deadtime correction coefficients, two new summations called R1 and R2 are calculated using
the measured foreground and background multiplicity distributions f(i) and b(i), each normalized to
1:
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Then

T fS R cSm m0 2 1= +( )    . (6-15)

This deadtime correction procedure is exact for uncorrelated events, but is only approximate for the
actual mix of correlated and uncorrelated events present in the multiplicity counter.  An exact
solution for mixed events in closed form is not yet available, but is under development in Europe.

The multiplicity deadtime parameter ∆ can also be determined by measuring a weak and a
strong 252Cf source.  The ratio of the triples rate to the doubles rate should be independent of the
252Cf source strength after deadtime corrections are made, so the deadtime can be determined by
adjusting ∆ to give the same triples/doubles ratio.  Then the multiplicity deadtime ∆ is also entered
under “Edit/Detector Parameters.”  The deadtime parameter c is usually set to zero.  It can provide
an extra correction factor for the triples rate when the normal multiplicity deadtime correction
procedure does not provide adequate correction—usually at extremely high count rates.

K . Detector Characterization:  Detectability Limit

The detectability limit, or minimum detectable mass, of a neutron counter is a useful way of
describing its sensitivity at very low sample masses.  This concept is usually not of interest for
multiplicity counting, except for multiplicity counting of waste drums.  However, if a multiplicity
counter is used as a conventional coincidence counter to assay small samples, it can have a very
good detectability limit because of its high efficiency, provided that room background is not too
high.  Different values for detection sensitivity can be obtained using the neutron singles or neutron
doubles, and either can yield a lower detectability limit, depending on the background count rates.
The detectability limit d (in grams of 240Pu) at three standard deviations above background can be
calculated for the multiplicity counter once the background count rate and calibration response have
been obtained.  The equation is
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d
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    , (6-16)

where    a   =   response of counter, either singles or double counts/(s•g 240Pu),
             B   =   room background rate, either singles or doubles counts/s, and
              t    =   count time.

This equation assumes that the background count rate has been measured for a much longer time,
so that the uncertainty in the background can be neglected.  Also, it is assumed that the background
rate is low enough that there are no significant number of accidental coincidences due to the
background.  Typical detectability limits for the Shield Cell Drum Counter (Part III, Section I) are
1 mg 240Pu by singles counting, and 2.5 mg of 240Pu by doubles counting.  For 100 kg of waste,
this is equivalent to 10 nCi/g by singles, and 25 nCi/g by doubles counting.

L . Measurement Control Features

This section summarizes the measurement control features of the NCC Windows code that
are important for monitoring the operation of the multiplicity counter (Harker 96).  Each DOE
facility count room usually has an instrument certification and measurement control program that
may include some of these features, but will also add other more formal requirements such as long-
term performance tracking.  The measurement control features that can be implemented in the NCC
code are as follows:

1. Background measurements—the background values stored in the code should be
updated at least once per day, and more frequently if there is reason to believe that the
room background is changing significantly.

2. Bias measurements—a bias run should be made at least once per day to ensure that the
counter is operating correctly.

3. Precision measurements—this option can be exercised relatively infrequently, such as
once per week or once per month, using “Acquire/Precision.”  It provides some
indication of the run-to-run stability of the electronics and checks that the statistical
error propagation is being done correctly.  A precision run should consist of a long
series or runs, preferably 40 or more.  The final results will be the number of runs, the
chi-square lower and upper limits, the sample and theoretical variance, and the chi-
squared value.  If this value falls outside the lower and upper limits, you will get a
“Fail” message.

4. Statistical and QA flags—these tests monitor the data collected by the NCC code and
include test limits that the operator can set under “Edit/Test parameters.”  Runs that fail
the test limits will be rejected, and additional runs will be taken to reach the total
number of runs requested.
a. A check-sum test is always applied to the multiplicity data to check for internal

consistency.  There are no test parameters, because exact agreement is required.
Repeated check-sum errors usually indicate a failure of the electronics package.

b. The accidentals/singles test (Eq. 4-4), with a usual limit of 4 σ.
c.  The accidentals/singles test rate limit, which turns off the test at rates below 1000/s.
d. The accidentals/singles test precision limit, which turns off the test if the accidentals

and singles are constant to within 0.1%.
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e. The outlier test, which rejects runs that lie outside a limit, usually set to 3 σ.
f.  The measurement control chi-squared limit, with a default value of 99%.
g. The maximum number of allowed bad measurements, usually set to 10.  For long

counts at low rates, a higher number may be needed.
h. Declared—assay quality check limit, with a default value of 3 σ.
i.  High voltage test limit, with a default value of 1%.

M . Multiplicity Calibration Procedure

The calibration procedure for neutron multiplicity counting does not require a series of
representative physical standards to determine a curve of instrument response versus 240Pu
(effective) mass.  Instead, the singles, doubles, and triples equations (Eqs. 5-48 through 5-54) are
solved directly for multiplication, α , and effective 240Pu mass.  To the extent that the plutonium
samples satisfy the assumptions of the “point model” (described in Part V, Section E), the
measured singles, doubles, and triples rates will correctly determine these unknowns without a
calibration curve.

To implement this procedure, we need to supply the NCC code with several parameters that
appear in the above-mentioned equations:  the detector efficiency ε, the multiplicity deadtime, the
doubles gate fraction fd, and the triples gate fraction ft.  These parameters are loaded under
“Edit/Detector parameters.”  In addition, because the assay procedure uses the first three
spontaneous and induced fission multiplicity distribution moments νsk and νik (given in Table 5-2)
as determined from the available nuclear data, these should be loaded under
“Calibration/Multiplicity.”

Initial determination of the detector and electronic parameters needed for multiplicity assay
can be done with a 252Cf source alone.  However, multiplicity assays of plutonium based on the
parameters determined from 252Cf alone can be biased because of uncertainties in the nuclear data
parameters for 252Cf and plutonium, differences in detection efficiency between 252Cf and
plutonium fission neutrons, and differences between the actual samples to be assayed and the
assumptions of the “point model.”  These uncertainties limit the accuracy of a calibration based
only on californium and nuclear data to about 2% (Carrillo 98).  As a result, a more complex
procedure for adjusting the detector and electronic parameters has been developed and is still being
refined at this point in time.  The following steps provide a summary of the procedure that is
currently recommended:

1. A series of californium sources can be used to determine the deadtime correction
coefficients for singles, doubles, and multiplicity, as described in Section J.

2. Using one of the californium sources of known yield, the dead-time-corrected
singles, doubles, and triples count rates can be used to determine initial values for
the absolute neutron detection efficiency ε, the doubles gate fraction fd, and the
triples gate fraction ft.  The procedure for determining the detection efficiency is
described in Section G, and the procedure for determining the doubles and triples
gate fractions is described in Section I.  These three quantities constitute the
“calibration coefficients” for multiplicity counting within the framework of the
“point model.”  However, if possible, they should be verified or adjusted as
described in the following additional steps.

3. At this stage, one should correct for the difference in efficiency between californium
and plutonium by Monte Carlo calculations or by measuring an actual plutonium
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standard, and adjusting the value of ε accordingly.  The magnitude of the
adjustment will depend on the actual multiplicity detector being used, but will
typically be in the range of 1% to 2%.

4. Whenever possible, the three calibration coefficients should be adjusted for errors
due to point-model assumptions by measuring one or more actual plutonium
standards similar in size, shape, density, and mass to the actual unknown samples
to be assayed.  The results of this measurement can be used in several different
ways, including
a. Adjust ft only, since it is most sensitive to point-model assumptions and most

sensitive to errors in nuclear data coefficients and energy spectrum shifts.  The
adjustment may be on the order of 10%, with the final assay changing by a
similar amount.

b. Adjust ε only to allow for scattering and moderation in distributed samples.
c. Adjust ε, fd, and ft in some consistent way, not yet defined, with one standard,

such as the Calex standard.  After adjustment, sample mass, M, and α  should
all be correct to the extent to which they are known.  Otherwise, the assay of
actual samples will introduce a bias that increases as M or α  increases.  As a
general guideline, if there is no independent information on the M or α  values
of the standards that would provide a physical basis for adjustment, it may be
conservative to minimize changes to the gate fractions.

5. It may be helpful to correct all multiplicity assays for shifts in the neutron energy
spectrum due to neutrons from (α ,n) reactions by using the ratio of counts in the
inner and outer rings.  This procedure is described in the following section.

6. For large metal samples, a correction for the nonuniform probability of fission in
large metal plutonium items is required.  This procedure is also described in the
following section.  The multiplication bias correction can be applied before or after
the correction for energy spectrum bias described in step 5 above.  In principle,
both corrections are not entirely independent of each other.  A future goal is to
integrate both steps 5 and 6 into the NCC code so that they can be applied in a
comprehensive, consistent fashion to all assays.

7. There is a final step that can be done at the end of a large measurement campaign if
other defensible documentation such as calorimetry measurements or destructive
analysis show that the multiplicity assays have a small overall residual bias.  Then
the calibration can be adjusted in one of the following ways:
a. Adjust ft only.
b. Adjust ε, fd, and ft in some consistent way, not yet defined, to minimize the

average bias.
Of necessity, this adjustment would be intended to remove an overall bias in sample mass only, not
M or α .
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N . Additional Correction Factors

There are two cases of practical importance where the theoretical model differs significantly from
the measured samples so that corrections are required.  These are called the “energy bias correction” and
the “multiplication bias correction.”

    Energy bias correction    :  If samples are highly moderating, the neutron detection efficiency
may not be constant from sample to sample.  Also, past experience has shown that metal items
have a slightly softer energy spectrum and a higher ring ratio than oxide items (Langner 93).  Most
importantly, neutrons from (α ,n) reactions may have significantly different average energies than
spontaneous fission neutrons, and therefore have different detection efficiencies and fission
probabilities.  In the multiplicity counter, the inner ring (Ring 1) has a higher detection efficiency
for low-energy neutrons, and the outer ring (Ring 3, 4, or 5) has a higher detection efficiency for
high-energy neutrons (Fig. 2.6 or Fig. 7.9).  Thus the ratio of Ring 1/Ring 3, 4, or 5 is a rough
measure of the average neutron energy in the counter and can provide a correction for this bias.

The multiplicity electronics module contains two extra scalers to facilitate the measurement
of ring ratios.  These scaler values are printed out with every assay, but there is no correction
factor built into the NCC software code yet.  A ring ratio correction to the assay results may need
to be applied to the data later in spreadsheet form.  This can be done in two ways:

a.  An empirical correction can be applied based on the observed relationship between ring
ratio and assay bias.  A recent example of this approach is given in Ensslin (98).

b.  An iterative mathematical correction can be applied which subtracts the estimated
spontaneous fission contribution to the signal in the inner and outer rings, determines a
ring-ratio correction from the remaining signals, and then solves the multiplicity
equations with separate detection efficiencies and fission probabilities for the (α ,n)
neutrons (Krick 97b).

     Multiplication bias correction    :  Past measurements of large metal samples have
demonstrated the need to correct multiplicity analysis based on the three-parameter point model for
the nonuniform probability of fission in large metal plutonium items (Fig. 7.4).  Monte Carlo
calculations have verified this effect, and two correction methods have been studied:

a.  An empirical correction based on the observed sample multiplication has been
developed.  The correction seems to be relatively consistent over most of the data
collected to date, as summarized in Langner (98).

b. When the dimensions and density of a sample are known approximately, a correction
factor can be calculated to account for the variation of the neutron multiplication
throughout the sample (Langner 93a).

A linear or nonlinear correction factor can be derived from either approach and installed in
the NCC software code under “Calibration/Multiplicity.”  There are three coefficients a, b, and c
that determine a correction factor (CF1) for the effective 240Pu assay mass that depends on the
neutron multiplication M through the equation

CF a b M c M1 1 1 2= + − + −( ) ( ) . (6-17)

For no correction, set a=1, b=0, and c=0.  These parameters must be determined outside the NCC
program and entered manually through the keyboard.  Then the NCC code will calculate CF1
based on the measured value for M and apply the correction to the assay.
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O . Assay/Verification Sequence

The data collection and analysis sequence used by the NCC code for assay or verification
runs is illustrated in Fig. 6.1, and summarized below (Harker 96).  For each run, the foreground
(R+A) and background (A) neutron multiplicity distributions are measured, and the NCC code
computes their factorial moments using Eqs. 5-7 through 5-8.  The singles, doubles, and triples
rates are calculated using Eqs. 5-14 through 5-16.  Then the sample multiplication, α , and effective
240Pu mass are obtained using Eqs. 5-48 through 5-54.  If the sample’s isotopic composition is
entered into the code’s database, the total plutonium mass is calculated from Eq. 1-2.

1. For each short run of 30 s or so,
Compute deadtime correction
Compute measured S,D,T
Perform statistical and QA checks
Subtract background Sbkg, Dbkg, Tbkg

Compute normalization correction
Solve multiplicity equations
Calculate total mass from isotopics

2. If there are additional runs, then for each run,
check data for internal consistency
if OK, add distribution to cumulative distribution

3. When series of runs is done, using the cumulative distribution,
Compute deadtime correction
Compute measured S,D,T
Perform statistical and QA checks
Subtract background Sbkg, Dbkg, Tbkg

Compute normalization correction
Solve multiplicity equations
Calculate total mass from isotopics

4. For verification runs, compare with entered value
5. Compute statistical errors from population of individual runs
6. Report results and print out if requested
7. Store all data in database and in an ASCII file.
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Do a run ( short time 
interval ~ 30s)

Check data for internal 
consistency

Add distribution  to 
cumulative distribution

Compute statistical errors 
from population 

of individual runs

  Report Results 
and store all data in 

database and
ASCII file.

Do deadtime 
correction

Compute S, D,T

Subtract 
Background

Calculate Assay 
Result

For this run only

For cumulative distribution

OK? Yes
No

Done Collecting ?
No Yes

Fig. 6.1.  The assay sequence used by the NCC Windows Code.

P . Measurement Error Calculation

The NCC code offers two choices for calculating the measurement errors that result from
counting statistics fluctuations:  theoretical standard deviation and sample standard deviation.  The
theoretical standard deviation is calculated using an error model based on the Figure of Merit code
(see Part II, Section B).  This approach estimates the true errors from sample and detector
parameters, and is usually accurate to about 15%.  The estimated error can be calculated from any
number of runs.

The sample standard deviation is calculated from the observed scatter of repeated runs.  The
accuracy of this error is determined by the number of runs.  The relative error of the sample
standard deviation is 1 2/ n  , where n is the number of runs.  The default selection is the
theoretical standard deviation.  However, for highly multiplying samples, the theoretical model
underestimates the true error by 50% to 100%, so sample standard deviations are recommended in
this case.
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VII. Applications and Expected Performance

A . Factors That Affect Multiplicity Performance

This part reviews the current applications of multiplicity counting and provides information
on the performance that has been obtained, or that is expected on the basis of calculations.  Most of
the available performance results come from the Los Alamos Plutonium Facility, the Livermore
Nuclear Materials Facility, RFETS, Hanford, or Savannah River.  Most of these efforts were
directed towards the measurement of impure plutonium oxide and metal in the range of a few
grams to a few kilograms for which the multiplication or α  value was unknown.  Some mixed
Pu/U oxide samples with assorted characteristics have also been measured.  There is no experience
yet with thorium, 238Pu, or 233U.  Table 7.1 provides a summary of past or expected performance
for multiplicity assay of many of the nuclear materials commonly found in DOE facilities.

Table 7.1.  Summary of past or expected multiplicity counter performance on various nuclear material
categories.  A well-designed multiplicity counter with roughly 50% to 55% detection efficiency is used, unless
otherwise specified in the text.

Nuclear
Material
Category

SNM
Mass
(g)

(α ,n)/sf
rate
   α

Counting
Time
(s)

Assay
Precision
(% RSD)

Assay
Bias
(%)

References

Plutonium Metal 2000 g
2000 g
4000 g
200-4000 g

0 to 0.2
0 to 0.2
0 to 0.2
0 to 1.3

1000 s
3000 s
1800 s
3600 s

7.1%
5.1%
2.0%
3.3%

-10.6%a

-4.7%a

0.0%
-1.8%

Langner 91b
Krick 92b
Langner 93b
Ensslin 98

Plutonium Oxide 2000 g
1000 g
1000 g
4000 g
1000 g

1
1
1
1-4
1-4

5000 s
3000 s
1800 s
1800 s
600 s

0.7%
0.8%
2.2%
3.0%
1-3%

0.6%
-2.7%
-0.1%
2.4%
0.9%

Langner 91b
Krick 92b
Langner 93b
Stewart 95
Stewart 98

Plutonium Scrap 100 g
100-1200 g

5
1-6

1000 s
3600 s

12%
4.5%

2-5%
1.5%

Langner 92
Ensslin 98

Plutonium
Residues

120 g
300 g
20-100 g
100 g

13-29
7-34
8-30
5-9

3000 s
3600 s
3600 s
3600 s

20%
18.9%
7%
8.7%

2-10%
-4.0%
7%
3.2%

Krick 92b
Ensslin 98
Langner 98
Langner P.C.

Plutonium Waste
(estimated)

1 g
1 g
1 g

1
5
20

1000 s
1000 s
1000 s

2%
10%
50%

1-2%
2-5%
5-10%

Ensslin 95
Ensslin 95
Ensslin 95

Plutonium Oxide
in Excess
Weapons
Materials

1000 g
1000 g
4000 g
4000 g

1 - 10
1 - 8
1 - 6
1 - 6

1500 s
1000 s
1800 s
1800 s

6.0%
5.0%
4.2%b

5.8%c

0.02%
1.0%
0.8%
-1.0%

Stewart 96
Stewart 97(PC)
Langner 96b
Langner 97b

Mixed Uranium/
Plutonium Oxide

300 g 1 - 2 1000 s 1-2% 1-3% Menlove 93

Large Drum
Inventory
Verification

1 - 4000 g
1 - 4000 g

1 - 6
7 - 50

6 - 12 h
6 - 12 h

10.2%
N/A

-0.5%
N/A

Rinard 97
Rinard 97

a Assay bias quoted without multiplication correction curve for metal.
b Assay precision based on counting statistics, gamma-ray isotopics, and scatter
  relative to calorimetry.
c Assay precision based on counting statistics and scatter relative to destructive
  analysis.
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One important question for safeguards personnel is when to use multiplicity counting
versus when to use conventional coincidence counting.  There are many conventional alternatives,
including nonlinear calibration curves, the known-α  approach, the known-M approach, ring-ratio
efficiency corrections, combined active/passive measurements, and californium add-a-source,
which work well on some material types.  The factors to be considered for each material type to be
measured are, in approximate order of importance

1. special nuclear material (SNM) mass,
2. (α ,n) reactions,
3. available detector efficiency,
4. sample self-multiplication,
5. neutron energy spectrum effects,
6. spatial distribution of fissile material,
7. other matrix effects such as density, self-shielding, neutron poisons,

and neutron moderators,
8. available detector die-away time,
9. available counting time/required precision,
10. count rate/dead-time effects,
11. container size and shape, and
12. room background.

To address this question, this part of the Applications Guide is broken into individual
sections for each major material type.  Multiplicity counter performance is considered in terms of
two parameters:  precision and bias.  Because the principal limitation of multiplicity counters is the
statistical error in the triples count, the counting precision sets a lower limit on the accuracy that can
be achieved for an individual sample.  And, because the counting time and precision depend
primarily on mass, the (α ,n) rate of the sample, and detector efficiency, these may be the most
important factors.  The observed assay precision is listed where available, or else estimated using a
Figure of Merit approach.  An example of a Figure of Merit calculation is given in Fig. 7.1 for
plutonium metal (α=0) and oxide (α=1), scrap (α=5), and residues (α=20).  The actual α  values
of such materials will vary from sample to sample, of course, but the values selected here are
representative of such materials.

Assay bias for multiplicity counting is in principle very low for samples that meet the
mathematical assumptions of the point model.  However, in practice the other container and matrix
factors listed above may yield noticeable biases.  For impure samples with unknown multiplication
and α , the accuracy is still usually much better than that of conventional coincidence counting, and
in some cases additional corrections can be applied.  Where measurement data are available, these
comparisons are given in the sections below.  Then, information on when to use multiplicity
counting versus conventional coincidence counting is provided where available.
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B . Plutonium Metal

Pure plutonium metal has no impurities that can yield neutrons from (α ,n) reactions, so that 
α=0.  This is the most favorable case in terms of multiplicity assay precision.  Figure 7.1 shows
that the precision from counting statistics in a 1000-s measurement will be 0.3% to 2% over the
entire mass range.  However, the counting precision for conventional coincidence counting is even
better.  Also, the multiplicity information is not needed if α=0, because the known-α  approach can
determine the mass and the multiplication from the singles and doubles rates.  Thus, if samples
are known to be pure plutonium metal, conventional coincidence counting will give better assays
because the precision is better.  If samples are thought to be pure, but not with certainty, then
multiplicity counting can be used to check the conventional assay.  If conventional and multiplicity
results are in statistical agreement, then the conventional result can be used; if they are in
disagreement, then the multiplicity result can be used.

1 10 100 1000
0.1

1

10

100

Multiplicity
Coincidence

a  = 0

a  = 1

a  =5

a  = 20

a  = 0

a  = 1

a  = 5

a  = 20

240Pu mass (g)

R
SD

 (
%

)

Fig. 7.1.  Example of the use of the Figure of Merit code to predict precision,
count time, and estimate bias in multiplicity and conventional coincidence assay.
The detector efficiency is 50%, the gate width is 64 µ s, the die-away time is
50 µ s, the predelay is 3 µ s, the background rate is 100 counts/s, and the
counting time is 1000 s.

In reality, most metal samples contain some impurities, and their surface is usually
oxidized.  A common sample type is plutonium metal buttons derived from molten salt extraction
(MSE), many of which are fractured.  These have an oxidized layer and other impurities such as
chlorine, calcium, and magnesium from the MSE process that yield (α ,n) neutrons.  The actual α
varies from near 0 to about 0.3 or more, which is large enough to ruin the accuracy of conventional
coincidence counting.
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Figure 7.2 compares conventional coincidence and multiplicity assays of eight plutonium
metal samples measured in the Five-Ring Multiplicity Counter for 1000 s each (Langner 91b).  The
conventional assay/reference results average 2.665% ± 81%, the multiplicity results average
0.894% ± 7.1%.  Similar measurements of five plutonium metal samples in the In-Plant
Pyrochemical Multiplicity Counter at the Los Alamos Plutonium Facility showed an average assay
bias of -4.7% ± 5.1% (Krick 92b).  In both cases, the multiplicity assay of these highly
multiplying samples exhibited a negative bias, and the precision was worse than expected from
counting statistics.  (The results presented in this paragraph do not include the multiplication
correction described below.)

7

6

5

4

3

2

1

0
20 40 60 80 100 120 140 160

240Pu Effective (g)

A
ss

ay
/R

ef
er

en
ce

Conventional Assay
Multiplicity Assay

Fig. 7.2.  Comparison of conventional coincidence and multiplicity assays
of eight plutonium metal samples using the Five-Ring Multiplicity Counter.

Measurements of five broken MSE metal product buttons and nine unbroken plutonium
metal samples in the In-Plant Pyrochemical Multiplicity Counter at the Livermore Nuclear Materials
Facility are described in Langner (93b).  Figure 7.3 illustrates the metal and oxide results from
Livermore, and Table 7.2 compares the coincidence and multiplicity results.  The negative bias in
the multiplicity assays averaged -9.3%, and is correlated with sample mass.  The coincidence
assays assumed pure metal, α=0, and exhibited a larger negative bias of -21.7%.
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Fig. 7.3.  Plutonium metal and oxide results using the In-Plant Pyrochemical
Multiplicity Counter at Livermore.

Table 7.2.  Summary of plutonium metal and oxide results by coincidence and multiplicity techniques using the
In-Plant Pyrochemical Multiplicity Counter at Livermore.

(Assay - Reference)/Reference (%)

Sample Type
Number of
Samples

Average Results for
Two-Parameter,

Conventional Assay 1σ

Average Results for
Three-Parameter,

Multiplicity Assay 1σ

Low Burn-Up Metal 10 -18.0 15.2 -9.7 5.4

High Burn-Up Metal 4 -30.9 1.6 -8.1 0.9

Metal Set 1 (Broken) 5 -3.3 1.3 -9.0 5.6

Metal Set 2 (Unbroken) 9 -28.7 9.1 -9.4 4.2

All Metal Samples 14 -21.7 14.1 -9.3 4.6

Low Burn-Up Oxide 11 23.1 15.8 -1.2 2.5

High Burn-Up Oxide 34 5.6 6.4 0.3 2.0

All Oxide Samples 45 10.0 12.2 -0.1 2.2

All Samples 59 2.3 18.5 -2.2 4.9

Plutonium metal buttons are dense, compact samples for which the theoretical point model
does not correctly describe the internal multiplication, so that corrections are required.  “Compact”
means that the mean free path of the emitted neutrons is near to, or shorter than, the sample
dimensions.  If the samples have high neutron multiplication, then the probability of fission is not
constant throughout the sample.  MCNP simulation of this effect confirms the presence of a
systematic low bias for metal, and that there is no appreciable effect in oxides.  Figure 7.4 is a
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compilation of all the metal data obtained with two distinctly different multiplicity counters, the In
Plant Counter and the 30-gal. Large Neutron Multiplicity Counter (Langner 97a).  The average
reference/assay ratio is 1.073 ± 0.071 (1σ).  The observed bias in the multiplicity assay is due
primarily to variations in the geometry of the buttons.  Monte Carlo calculations of the “correct”
multiplication M for each sample showed that M varied from 1.2 to 2.0 over these samples.  After
application of a simple empirical bias correction, the average reference/assay ratio is 1.003 ± 0.035
(1σ).  The left half of Table 7.3 summarizes this correction for the Livermore measurements.
Now the average bias in the assay results is very small, and the results for metals are only slightly
poorer than for oxides.
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Fig. 7.4.  Compilation of plutonium metal data obtained
with the In-Plant Pyrochemical Multiplicity Counter and the
30-gal. Large Neutron Multiplicity Counter.
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Table 7.3.  Summary of plutonium metal and oxide results by multiplication-corrected, and both multiplication-
and ring ratio-corrected multiplicity techniques using the In-Plant Pyrochemical Multiplicity Counter at Livermore

(Assay - Reference)/Reference (%)

Sample Type
Number of
Samples

Average Results
When

Multiplication
Corrected

1σ

Average Results When
Multiplicity and Ring

Ratio Corrected 1σ

Low Burn-Up Metal 10 -1.4 1.9 -0.3 2.2

High Burn-Up Metal 4 3.1 0.8 0.9 0.9

Metal Set 1 (Broken) 5 -0.1 1.0 1.3 0.9

Metal Set 2 (Unbroken) 9 -0.2 3.3 -0.9 2.2

All Metal Samples 14 -0.1 2.7 0.0 2.0

Low Burn-Up Oxide 11 -1.6 1.9 -1.4 2.0

High Burn-Up Oxide 34 0.7 1.9 0.5 1.4

All Oxide Samples 45 0.1 2.1 0.0 1.8

All Samples 59 0.0 2.2 0.0 1.8

Neutron multiplicity counting of plutonium metal can also be used to provide information
other than assay results.  For example, a serious problem that can occur during storage of metal is
oxidation.  As plutonium metal oxidizes, its volume increases and the production of (α ,n) neutrons
increases.  Multiplicity measurements are sensitive to this increase, but because the geometry of the
metal samples can change dramatically as they oxidize and break up, the known-α  approach using
conventional coincidence counting is actually more sensitive to an increase in plutonium oxide in
the presence of plutonium metal.

Another application of the multiplicity counter is to provide a direct measure of the neutron
multiplication of a sample.  For example, a metal plutonium sample can be easily distinguished
from isotopic neutron sources with a multiplicity counter.  This is because the triples/doubles ratio
is a direct measure of the neutron multiplication, nearly independent of sample type.

C . Plutonium Oxide

Pure plutonium oxide yields neutrons from both spontaneous fission and from (α ,n)
reactions in oxygen.  Depending on whether the plutonium is low or high burnup, the value of α
obtained from Eq. 5-3 is in the range of 0.4 to 0.8.  If some impurities are present, it is
conservative to estimate that α  = 1.  Figure 7.1 shows that the precision from counting statistics in
a 1000-s measurement will be 0.6% to 8% over the entire mass range.  However, the counting
precision for conventional coincidence counting is again better.  Also, the multiplicity information
is not needed if the oxide is so pure that α  can be calculated, and the known-α  approach can
determine the mass and the multiplication from the singles and doubles rates.  If samples are
known to be pure oxide, conventional coincidence counting will give better assays because the
precision is better.  If samples are thought to be pure, but not with certainty, then multiplicity
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counting can be used to check the conventional assay.  If conventional and multiplicity results are
in statistical agreement, then the conventional result can be used; if they are in disagreement, then
the multiplicity result can be used.

As in the case of plutonium metal, most actual oxide samples available in DOE facilities are
impure, with actual α  values between 1 and 4, and multiplicity counting will be significantly more
accurate than conventional coincidence counting.  Figure 7.5 compares conventional coincidence
and multiplicity assays of eight pure plutonium oxide samples and seven impure oxide samples
measured in the Five-Ring Multiplicity Counter for 5000 s each (Langner 91b).  The conventional
coincidence results include the known-α  correction for (α ,n) reactions in the oxide.  The pure
oxide samples have an average assay/reference ratio of  1.004 ± 1.4% by coincidence counting,
and 1.006 ± 0.66% by multiplicity counting.  The impure oxide samples are 1.039 ± 8.2% by
coincidence counting, and 1.005 ± 0.68% by multiplicity counting.  Another example is given by
Krick (92b), where five plutonium oxide samples were measured in the In-Plant Pyrochemical
Multiplicity Counter at the Los Alamos Plutonium Facility, with an average assay bias of -2.7% ±
0.8%.

Fig. 7.5.  Comparison of conventional coincidence and multiplicity assays of
pure and impure plutonium oxide samples measured in the Five-Ring
Multiplicity Counter.

Figure 7.3 includes data on 11 low-burnup and 34 high-burnup plutonium oxide samples
measured in the In-Plant Pyrochemical Multiplicity Counter at the Livermore Nuclear Materials
Facility for two 900-s runs (Langner 93b).  The average precision due to counting statistics was
0.5% to 1.0%.  The conventional technique used the known-α  approach, so the impurities biased
the results high (whereas most of the metal results were biased low).  Table 7.2 compares the
conventional coincidence and multiplicity results.  The multiplicity assays are superior because of
the effects of unknown impurities.  For all 45 oxide samples, the individual assay accuracy was
2.2% (1σ).  Metal and oxide samples can be distinguished by their ring ratio.  There is a small
correlation between ring ratio and assay bias, which can be used to develop a correction.  If this is
applied to the assays, there is an additional small improvement, as given in Table 7.3.  With the
additional ring ratio correction and the multiplication correction described in the previous section,
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the counter assayed all metal and oxide samples to 1.8% (1σ).  The multiplicity analysis displays
no statistically significant bias, and the scatter in the results is consistent with the expected
uncertainty in the reference values and the precision calculated in Fig. 7.1.

Figures 7.6 and 7.7 provide another comparison of conventional and multiplicity results for
21 heterogeneous plutonium oxide inventory samples using the Three-Ring Multiplicity Counter at
Hanford (Stewart 95).  Some of these samples were pure oxide, but most were impure.  The
passive calibration (Fig. 7.6) and known-α  (not illustrated) approaches did not work well because
of the enhanced coincidence rates that result from induced fissions caused by an unknown number
of (α ,n) neutrons.  The quality of the known-M approach (not illustrated) depended on the density
variations in the sample set.  Multiplicity (Fig. 7.7) gave the lowest overall bias, but required long
count times for samples with high α  values.  Most measurements were 1800 s.  Several high-α
samples were measured overnight.  The loss of counting precision with increasing α  was
illustrated in Fig. 7.1 and is shown specifically for this type of heterogeneous oxide in Fig. 7.8
(Stewart 96).  The value of α  ranges from 1.3 to 10.4, and as a result, the greatest source of error
is the counting statistics on the triples rate.

Fig. 7.6.  Results for assay of 21 heterogeneous plutonium oxide inventory
samples with a passive coincidence calibration curve, using the Three-Ring
Multiplicity Counter at Hanford.
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Fig. 7.7.  Results for assay of 21 heterogeneous plutonium oxide inventory
samples with multiplicity analysis, using the Three-Ring Multiplicity
Counter at Hanford.

D . Plutonium Scrap

Plutonium scrap is plutonium-bearing materials that are left over from processing activities,
and that can be recycled in the future.  Scrap can include relatively pure metal or oxide, or materials
with large quantities of matrix elements like fluorine and beryllium.  For the purpose of this
Applications Guide, scrap may be defined as plutonium samples with α  values in the range of 1 to
10.

If the scrap samples are known to be impure, then the best passive neutron measurement
technique depends on the nature of the sample.  For example, a highly multiplying impure
plutonium metal sample is best assayed with multiplicity counting, but a sample with very low
multiplication and very high (α , n) rate (like waste) is best assayed with conventional coincidence
counting, such as the known-M approach.  The curve for α=5 in Fig. 7.1 shows that the expected
multiplicity precision for scrap in the range of 1 to 100 g 240Pu is in the range of 2% to 12% in
1000-s counting time, whereas the precision for conventional coincidence counting is about 0.5%.
The loss of counting precision with increasing α  was also illustrated in Fig. 7.8 (Stewart 96).
Thus the selection of multiplicity or coincidence counting will depend very much on the form of the
material, and whether the lower bias in the multiplicity assay, which can correct for induced
fissions, will outweigh the loss of counting precision.



89

Fig. 7.8.  The relative standard deviation of the multiplicity assay
mass from counting statistics vs α  for 1200-s measurements of 67
samples of heterogeneous oxide.

If the plutonium scrap samples contain moderating materials, or if they emit enough (α ,n)
neutrons with energies much different from fission neutron energies, as listed in Table 5.5, then
the neutron detection efficiency will vary from sample to sample.  In this case, a multiplicity
counter will have another advantage because it is designed so that the detector efficiency is
insensitive to neutron energy.  In addition, the ratio of counting rates in the inner and outer rings of
3He tubes is sensitive to neutron energy and can be used to correct for variations in the average
neutron energy spectrum.  The multiplicity electronics module contains two extra scalers to
facilitate the measurement of ring ratios.

Measurement experience confirms that samples containing large quantities of impurities
display dramatic changes in their ring responses (Langner 92).  Figure 7.9 illustrates the measured
ratio of Ring 1 to Ring 4 as a function of approximate mean neutron energy for various samples in
the In-Plant Pyrochemical Multiplicity Counter.  The ring ratio information can be a valuable tool in
identifying samples that contain gross impurities and in distinguishing metal from oxide.
However, because this multiplicity counter was designed to be insensitive to variations in the
energy of the emitted neutrons, there are no strong correlations between the ring ratios and the
assay results.  A ring ratio correction can be determined by an empirical fit to the observed
relationship between ring ratio and assay bias, or by the use of an iterative mathematical correction
(Krick 97b).



90

Fig. 7.9.  The measured ratio of Ring 1 to Ring 4 as a function of
mean neutron energy for various samples in the In-Plant Pyrochemical
Multiplicity.

E . Plutonium Residues

Residues are plutonium-bearing materials that were retained during production operations
because the recovery of the plutonium was deemed less expensive than the cost of producing new
material in a reactor.  They can include ash, combustibles, inorganics, salts from pyrochemical
processes, and wet items.  Residues often represent a significant portion of the accountable item
and mass inventory, and sometimes require stabilization and/or repackaging.

The residues in some DOE facilities represent categories of material that are difficult to
measure.  They are often packaged in large cans or drums, have significant quantities of SNM, and
are very heterogeneous.  They often contain interfering radionuclides such as 241Am which can
degrade gamma-ray, calorimetry, or neutron assay.  Calorimetry may be the preferred option for
items that are not too large and that do not have a very high 241Am content.  Tomographic gamma
scanning may be a quicker preferred option for cans or drums that do not contain lumps too dense
for the emitted gamma-rays to escape.  Among the passive neutron techniques, multiplicity
counting is the only feasible option because residue assay will require penetrating radiation, a flat
energy response, very high efficiency to collect triple coincidences with tolerable precision, and a
ring-ratio correction to deal with changes in the neutron energy spectrum.

Because many residues contain large quantities of matrix elements like fluorine and
beryllium, they may exhibit α  values of 10 to 30 or more.  The multiplicity technique is not well
suited for samples that produce many more (α , n) neutrons than spontaneous fission neutrons
because the errors from counting statistics are large.  Such materials cannot be assayed
successfully by multiplicity without extremely long count times to get good precision on the
triples.  This is suggested by the curve for α  = 20 in Fig. 7.1.  However, for plutonium samples
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with unknown (α ,n) rates, multiplicity analysis will be far less biased than conventional
coincidence counting, particularly if a ring-ratio correction is used to compensate for changes in the
neutron energy spectrum.

An example is the assay of 10 high-α  plutonium samples in the In-Plant Pyrochemical
Multiplicity Counter at the Los Alamos Plutonium Facility (Krick 92b).  The samples were
electrorefining salts or molten-salt extraction salts, most with high 241Am content.  The values for 
α  were between 13 and 29.  The average assay bias for these items was low, 0.9% ± 4.8%, but
the typical RSD that would be expected for a 1000-s measurement is 20%.  Other examples
included in Table 7-1 are high-α  ash, salts, and crucibles measured at Los Alamos (Ensslin 98);
sand, slag, and crucible measured at Savannah River (Langner 98); and direct-oxide-reduction
(DOR) salts measured at RFETS (Langner, private communication).

F . Plutonium Waste

There is considerable interest in applying passive neutron multiplicity counting to 55-gal.
waste drums, even though waste drums may contain only a few grams of plutonium.  The
additional information available from multiplicity counting can flag the presence of shielding
materials, detect highly multiplying items that should not be present, or improve assay accuracy by
correcting for matrix effects such as (α ,n)-induced fission or detector efficiency variations.  No
published performance data are available yet, but the expected assay precision for multiplicity
analysis of waste drums has been estimated using a Figure of Merit code (Ensslin 95).

Figure 7.10 plots the estimated precision for neutron coincidence and multiplicity assay of
waste as a function of α , if the multiplicity information is used to solve for mass, M, and α
(Ensslin 95).  The assumed detector efficiency is 35%.  The figure shows that the multiplicity
assay of relatively clean plutonium waste, with α  values between 0.5 and 5, will have an RSD in
the range of 2% to 10%.  This is not the same high precision and accuracy that multiplicity
counters can achieve for the assay of small cans of plutonium, but does show that multiplicity of
waste is feasible with high-efficiency drum counters.  Waste with high fluoride content may have 
α  values of 20 to 150, and the RSD will rise to 20% to 100% or more.  Even with this poor
precision, multiplicity assay may be much more accurate than conventional coincidence counting
because the bias caused by (α ,n) induced fissions is corrected.
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Fig. 7.10.  Estimated precision for neutron coincidence and
multiplicity assay of waste as a function of α , if the
multiplicity information is used to solve for mass, M,
and α .  Efficiency = 35%, gate width = 64 µ s, die-away
time = 100 µ s, counting time = 1000 s, and background =
10 counts/s.

When we use multiplicity analysis to solve for detector efficiency rather than sample
multiplication, the multiplicity RSD increases by a factor of 3 to 4 over the entire mass range
(Ensslin 95), and will be 5% to 15% at best.  Because the use of multiplicity analysis to solve for
detector efficiency significantly increases the RSD, alternative techniques for determining
efficiency, such as segmented add-a-source (Menlove 96) or ring-ratio analysis (Langner 92)
should be employed.

The precision for waste assay estimated from the Figure of Merit code is included in Table
7.1, and rough estimates of the expected bias due to remaining matrix effects are also included.
What is the optimum tradeoff between multiplicity analysis of waste, which has worse precision
but less bias, and conventional coincidence assay of waste, which has better precision but worse
bias?  Pickrell (97a) has developed a tunable multiplicity approach that would select coincidence
counting at low mass, where coincidence has better precision, and would select multiplicity at
higher mass, where coincidence is biased by (α ,n)-induced fissions.  The example in Fig. 7.11
compares the total error in tunable multiplicity with the total errors in coincidence and multiplicity
counting (Pickrell 97a).
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Fig. 7.11.  Comparison of the total error in tunable multiplicity with the
total errors in coincidence and multiplicity counting, Detection efficiency = 20%, 
α  = 1, and counting time = 100 s.

For multiplicity assay of waste, the drum counter should be operated with a room
background in the range of 10 to 100 counts/s.  Higher values will seriously degrade both
coincidence and multiplicity assay RSD over the low mass range of 1 to 50 g of plutonium.  At
very low fission rates, corrections for cosmic-ray events can be made with a gate multiplicity
analysis method (Krick 97a) or with a Pulse Arrival-Time Recording Module (Arnone 92, Brunson
97).  Typical detectability limits that can be obtained with low backgrounds are 1 mg 240Pu by
singles counting, and 2.5 mg of 240Pu by doubles counting.  For 100 kg of waste, this is
equivalent to 10 n Ci/g by singles, and 25 n Ci/g by doubles counting.  The triples count rate
information is not useful for counting near the detectability limit.

G . Verification of Plutonium Oxide in Excess Weapons Materials

During the past few years, the IAEA has begun to inspect containers of plutonium oxide
that DOE has declared as excess weapons materials at Hanford and RFETS (Stewart 95).  At
Hanford, the initial offering consisted of over 500 items and included plutonium oxide (500 to
1600 g) and residue items (300 to 1700 g), each packaged in three nested cans.  The second
offering included over 600 items of scrap material (800 to 1100 g per item) (Stewart 96).  The
Physical Inventory Verification (PIV) process involves selecting items from this large offering of
heterogeneous materials and carrying out a combination of gamma-ray isotopic, neutron
multiplicity, calorimetry, and destructive analysis measurements.  For verification of
heterogeneous materials, calorimetry/isotopics determines the most accurate plutonium mass in
most cases.  Multiplicity/isotopics quickly verifies the authenticity of the item and determines the
plutonium mass in most cases at the partial defects level.

At Hanford, the initial PIV campaigns used the Three-Ring Multiplicity Counter, which has
a 45% detection efficiency, and an efficiency profile which is not as constant as for most well-
designed multiplicity counters (Stewart 96).  Figure 7.12 shows the verification results for 69
items counted for 20- to 30-min count times.  The data points include 1σ error bars from counting
statistics.  The average percent difference between declared and assay mass is 0.02 ± 0.83%.



94

Twenty-eight of the measurements lie within the 3% limit set for bias defects, and 67 lie within the
18% limit set for partial defects.  So 67 passed the IAEA acceptance criteria, and two were selected
for destructive analysis.

Fig. 7.12.  Physical Inventory Verification results for 69 items using
the Three-Ring Multiplicity Counter at Hanford.

For these 69 samples, α  ranged from 1.3 to 10.4.  There is little if any correlation between
the declared/assay mass difference and the sample’s α  and multiplication.  The greatest source of
error is the counting statistics on the triples rate (see Fig. 7.8 above for a graph of the RSD from
counting statistics versus α  for these samples).  For example, one of the items that failed the
acceptance criteria and was selected for destructive analysis was measured just once for 1200 s,
with a difference of 22%.  The statistical uncertainty was about 13% because α  was about 6.  A
longer count time would probably have given agreement, because destructive analysis gave good
agreement with declared plutonium mass.

At RFETS, several PIV campaigns have been conducted using the Large Neutron
Multiplicity Counter, which has an efficiency of 42% (Langner 95).  The offered materials are
stored in 10-gal. drums, with each drum containing two plutonium oxide cans, one above the
other.  Each can contains up to 2-kg each, so the total drum loading is 1 to 4 kg.  The plutonium is
6.0% 240Pu, with a 2% to 6% relative uncertainty in book value. The α  values ranged from 1 to 6.
All samples were measured for 30-min counting times, although samples with the larger α  values
should be counted longer.  There was no significant bias in the assay results due to the presence of
two plutonium oxide cans stacked one above the other.  Figure 7.13 illustrates similar results
obtained at Los Alamos with both single and stacked samples.  The five highest mass samples are
stacked oxides, and there is no observable bias relative to the single cans.
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Fig. 7.13.  Multiplicity assay results for single and
stacked plutonium samples using the Large Neutron
Multiplicity Counter.

Figure 7.14 compares known-α  conventional coincidence assay and multiplicity assay for
some of the RFETS PIV measurements (Langner 96b).  Multiplicity improved the average
agreement between declared and assay by nearly a factor of two over the best conventional
approach (in this case, actually the known-M approach).  The RSD due to counting statistics alone
averaged 2.6%, and eight samples had α  values such that their estimated counting precision was
higher than 5%.  Multiplicity verified 61% of the samples to within ±3%, and 100% to within ±
18%.  Overall, 1σ agreement between multiplicity and site declarations was 4.2 % for all samples.

1008060402000
-400

-300

-200

-100

0

100

Assay Number (Randomized)

(D
ec

la
re

d
 -

 A
ss

ay
) 

/ D
ec

la
re

d
 (

%
)

Known-Alpha Assay
Multiplicity Assay

Fig. 7.14.  Comparison of known-α  conventional
coincidence assay and multiplicity assay for some of the RFETS
PIV measurements using the Large Neutron Multiplicity
Counter.



96

Figure 7.15 summarizes the initial PIV and first annual PIV measurement results for 112
impure plutonium oxide drums (Langner 97b).  One drum had such high impurity and radiation
levels that it could not be assayed by the Large Neutron Multiplicity Counter (α  was in excess of
40).  For this type of drum, calorimetry of the individual cans or sampling and destructive analysis
are the preferred techniques.  The combined result for the other 111 was an average-declared
minus assay of 0.75% ± 4.17% (1σ).  For 24 drums that were sampled for destructive analysis,
the comparison was -1.0% ± 5.79% (1σ).  The increase in bias and precision was observed only
on drums with heterogeneous characteristics and is most likely due to sampling error and the
presence of more impurities in those drums.
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Fig. 7.15.  Summary of initial PIV and later PIV measurement results for
112 impure plutonium oxide drums measured at RFETS using the Large
Neutron Multiplicity Counter (Langner 97b).  (From LA-UR-97-2650)

H . Mixed Uranium/Plutonium Oxide

Mixed oxides are materials that do not meet all of the assumptions used in the multiplicity
mathematics, and therefore must be assayed with caution.  The induced fission multiplicity
distributions, fission cross sections, and capture cross sections in uranium are different from those
in plutonium.  However, the multiplicity analysis approach described in Part V above does not
incorporate two different sets of nuclear data information.  If the calibration constants appropriate
for plutonium (detector efficiency, double and triple gate fractions) are used to assay plutonium
oxides that have a large uranium concentration relative to their plutonium content, the assay results
will tend to bias low (Langner 97a).  Of course, if those constants are adjusted to fit a particular
mixed oxide material type with a fixed U/Pu ratio, then the multiplicity performance will be good.
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The first Plutonium Scrap Multiplicity Counter was fabricated for IAEA verification
activities in a MOX facility in Japan.  The counter is used to verify relatively large scrap and MOX
containers with variable impurities, most of which fit within the flat portion of the counter’s
efficiency profile.  A typical high-burnup MOX sample containing a few hundred grams of
plutonium gives 1% to 2% assay precision in a 1000-s measurement (Menlove 93).

I . Mixed Uranium/Plutonium Inventory Verification in Large Drums

A novel and difficult application of multiplicity counting to bulk inventory verification at
Savannah River was recently reported by Rinard, McClay, and others (Rinard 97).  The inventory
consisted of cans of plutonium and/or uranium stacked in varying configurations in sealed 5-, 10-,
30-, or 55-gal. drums.  The SNM was in metal, oxide, scrap, scrub alloy, or other forms.  For the
plutonium, α  values ranged from less than 1 to about 50.  For the uranium, the enrichment varied
from 0.22% to 93%.

Verification of this difficult-to-measure inventory required a combination of NDA
instruments large enough to accommodate 55-gal. drums.  A large segmented gamma scanner was
used to scan the drums for the location of the cans and verify the isotopic composition by high-
resolution gamma-ray spectroscopy.  A 55-gal. drum californium shuffler was used for both
delayed neutron counting of uranium and passive neutron counting of plutonium.  This shuffler
was not designed for multiplicity counting; multiplicity electronics was added with no other
changes.  The low detection efficiency of about 18% was not a problem for most of the drums
because long count times were available.  However, the strong dependence of the detection
efficiency on the neutron energy introduced a bias into the assays because the energy of the
neutrons from (α ,n) reactions was unknown.

The passive neutron data were analyzed four ways:  (1) with a linear coincidence calibration
curve, (2) with a nonlinear coincidence calibration curve, (3) with the conventional known-α
multiplication correction, and (4) with multiplicity.  For low plutonium masses (less than 15 g
declared) the neutron multiplication was assumed to be 1, and the assay mass was determined from
the linear coincidence calibration curve.  For all other drums, the level of multiplication and
impurities was sufficient to require multiplicity counting.  Multiplicity counting was found to
provide a higher level of verification than is possible with conventional coincidence counting
because it required less initial information about the inventory.  A potential liability of multiplicity
counting in this case was that the sample cans were stacked with two or more to a drum.  The
mathematical assumption used in coincidence and multiplicity counting, that the sample is a point
source, has a worse effect on multiplicity counting.  However, in this measurement campaign, no
additional biases were observed in the multiplicity assays that could be attributed to this effect.

For this Savannah River inventory, 73 of the 90 drums containing plutonium were verified
to within 25% (Rinard 97).  The total average bias is only -0.5%, and the average assay minus
declared standard deviation is 10.2%.  The 17 remaining drums could not be verified for a variety
of reasons.  Eight of the drums had α  values between 7 and 50, which are too large for multiplicity
assays in this shuffler because of the large statistical errors and the strong energy dependence of
the detection efficiency.  These drums cannot be assayed by passive neutron counting in this
instrument.  A few drums showed statistically significant coincidence rates equivalent to some
grams of plutonium, although none was declared.  Some of these apparent masses may be real,
and represent mislabeling for items.  Others may be due to induced fissions in uranium or
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spontaneous fissions in other elements, and some may be due to cosmic ray events in high-Z
materials in the drums.

J . Comments on Inventory Verification by Multiplicity Counting

Sections G and I provided examples of measurement campaigns where multiplicity counting was
quite successful for inventory verification.  Some general comments are given here based on the work
referenced in those two sections and on a recent study of 50 measurements, referenced to
calorimetry/gamma-ray isotopics, at the Los Alamos Plutonium Facility (Ensslin 98).

It is helpful to segregate items being considered for multiplicity counting into categories
such as calibration and measurement control standards, plutonium metal, low-α  plutonium (impure
oxides and scrap), and high-α  plutonium (residues with α  > 6).  These categories can be defined
by the observed assay results for sample multiplication, mass, α , or measurement precision.

For high-α  plutonium, multiplicity counting can be useful but is not the preferred technique
because of the long counting times required.  For the other categories, counting times of 1800 s
(half an hour) are usually sufficient to eliminate counting statistics as a significant contribution to
the overall assay precision.  It may be helpful to do all assays at 1800 s, then decide on the basis of
the observed α  whether additional counting time is warranted.  For metal items, the data analysis
procedure should include at least a multiplication bias correction, and for impure plutonium items
the procedure should include at least an energy bias correction.

The overall assay precision of multiplicity counting for total plutonium mass has a lower
limit of about 3% RSD once the error on the 240Pu-effective as determined by gamma-ray isotopics
is folded in.  This limits the potential performance of multiplicity counting relative to calorimetry if
the isotopic composition is determined from gamma-ray analysis.  At some facilities, the use of
stream-average isotopics may provide better results and can eliminate the time required to do
gamma-ray isotopics.

Multiplicity counting can be a useful technique for inventory verification.  It should be
possible to verify about 75% or more of a diverse inventory of plutonium metals, oxides, salts,
and residues to about 5% accuracy in one-half hour counting times.  For a variety of reasons
related or unrelated to the multiplicity technique itself, one can expect some fraction of the
measurements to be well outside the reasonable expected limit of error.  These will still require
calorimetry and/or gamma-ray isotopics to resolve.  However, multiplicity counting can
substantially reduce the number of items that require calorimetry and gamma-ray isotopic analysis
and allow an increase in facility measurement throughput.
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VIII. Multiplicity Counter Selection and Procurement

A . Summary of When to Apply Multiplicity Counting

One important question for safeguards personnel is when to use multiplicity counting
versus when to use conventional neutron coincidence counting or calorimetry.  This is a complex
question because multiplicity counting lies between conventional coincidence counting and
calorimetry in terms of accuracy and count time requirements.  Also, there are many conventional
coincidence alternatives, including nonlinear calibration curves, the known-α  approach, and the
known-M approach, which work well on some material types.

Part VII of this guide provided some detailed information on the performance that could be
expected from multiplicity counting for many common material types.  Estimates for the expected
precision and bias of multiplicity counting were given in Table 7-1.  More experience is required to
determine the accuracy of multiplicity counting for some sample types, but some general
conclusions from Part VII are as follows:

(1)  If samples are known to be pure plutonium oxide or metal, then conventional
coincidence counting will give better assays than multiplicity counting because the (α
,n) yield can be calculated and does not need to be measured.

(2)  If samples are thought to be pure, but not with certainty, then multiplicity counting can
be used to check the conventional assay.  If conventional and multiplicity results are in
statistical agreement, then the conventional result can be used; if they are in
disagreement, then the multiplicity result can be used.

(3)  For impure materials with high (α ,n) reaction rates, the overall performance of
multiplicity counting is significantly better than conventional coincidence counting even
though the precision is significantly degraded as the (α ,n) reaction rate goes up.  If the
(α ,n) reaction rate is very high, the counting time required for multiplicity will
approach or exceed that required for calorimetry.  Then calorimetry should be used, if
available.

(4)  Multiplicity counting provides a higher level of verification than is possible with
conventional coincidence counting because less information about the sample is needed.
In general, when multiplicity hardware and software is available, the multiplicity
information should be collected, either to improve assay accuracy or to provide
additional diagnostic information.

(5)  Calorimetry is inherently a more matrix-insensitive NDA technique than multiplicity
counting.  Where calorimeters are available with large enough wells to accommodate
the samples, and the longer count times are acceptable, they will usually provide more
accurate results.

With these general conclusions in mind, the following sections describe more specifically
the criteria to be considered in selecting a multiplicity counter.  For some material types and facility
requirements, conventional coincidence counting or calorimetry may be the appropriate choice
instead.
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B . Sample Selection Criteria

The physical size of the sample container determines the    assay chamber size   .  Also, the
taller the sample container, the longer the required 3     He tube length        to help maintain a    flat spatial
   efficiency profile    throughout the assay chamber.  A flat spatial profile is important because the
material distribution or container fill height is usually variable from sample to sample.  For
containers with distributed plutonium sources, a    flat spatial efficiency profile    is even more
important to reduce deviations from the point model that affect the multiplicity analysis.

For scrap and waste materials with low plutonium content, the     detectability limit    may be an
important criterion.  It is a function of the detector efficiency, background count rate, and counting
time, as defined in Part VI, Section K, and an    external shield     may be required to get a low limit.
To achieve a specific assay RSD in reasonable counting times of 15 to 30 min,     high detection
   efficiency     may be required, which implies a large     number of    3     He tubes      .  For high plutonium mass
samples, other counter properties become important.  The    counter die-away time    should be low to
minimize the accidental coincidence background, and the electronics should have low    counting
    deadtime    to minimize counting losses.  The number of 3He tubes per Amptek preamplifier should
be small, and a shift-register-based electronics package should be used.  This combination can
accept count rates up to the order of 1 MHz without serious deadtime losses.  To reduce the self-
multiplication in large samples, a    cadmium-lined sample well    is used to reduce multiplication of
return neutrons from the polyethylene and to improve the criticality safety of the counter.  For very
large samples, it may be important to use a sample well small enough to     prevent double batching    of
samples in the well.

Other sample matrix effects present in small or large samples include (α ,n) reactions and
neutron moderators or poisons.  For high (α ,n) reaction rates, low    counter die-away time    helps to
reduce the accidental coincidence background.      Flat energy spectrum efficiency     is also important so
that the counter has roughly the same efficiency for detecting neutrons from spontaneous fission
and from (α ,n) reactions.  If the sample matrix contains water or other hydrogenous materials that
moderate neutrons and reduce their energy spectrum, the multiplicity counter should definitely have
a    flat energy spectrum efficiency     to mitigate the change in neutron detection efficiency.  The effect
of neutron poisons in the sample is not easily observed, but a    flat energy spectrum efficiency     will
mitigate the effect of a shift in the emitted neutron energy spectrum, and a    cadmium-lined sample
     well    will dampen the effect of thermal neutron capture in the poisons.

Samples with high americium content are not only strong sources of (α ,n) neutrons, but
also strong sources of 60-keV gamma rays.  To avoid exceeding the 3He tube dose limit of about 1
R/h, it is sometimes helpful to use a    thick cadmium liner    on the sample well to increase the
attenuation of these gamma rays.  For irradiated materials that emit higher energy gamma rays, a
   lead-lined sample well    is used.

C . Facility Selection Criteria

DOE facilities currently use neutron counters for both in-line and at-line applications.
Unsealed process materials inside glove boxes can be assayed by extending a well down from the
glove box and installing an    in-line counter    around the well, such as the ARIES Neutron Counter
(Part III, Section F).  An in-line counter will have to be low enough to be installed under the glove-
box line.  For canned, sealed plutonium samples, a freestanding    at-line counter    can be used to
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assay samples near the glove-box line or in a separate NDA counting room.  An at-line counter will
need to be small enough to fit into the available floorspace and headroom.

For either in-line or at-line applications, if the sample and/or the top end-plug are too heavy
for an operator to remove and insert easily, a motor-driven    sample lifting mechanism      may be
attached to the well counter.  If the top end-plug is very heavy, or if the height of sample entry
above the floor needs to be minimized, a    front-loading design     may be used, such as the Large
Neutron Multiplicity Counter (Part III, Section H).  If there are significant background neutron
sources from process lines or nearby material storage areas, an    external shield     of polyethylene
should be added.

For verification of inventory samples by DOE or IAEA inspectors, it is sometimes
necessary to move the multiplicity counter from one building or site to another.  For such
applications, it is important to minimize the overall size and weight of the counter.  Design features
that make a neutron counter more portable include     no external shield    ,    less    3     He tube rings      , and
   shorter    3     He tube length       .

If low assay bias is important to make the multiplicity data useful to the facility
accountability system, the counter should have a    flat spatial efficiency profile    and nearly    flat energy
   spectrum efficiency    .  Assay bias can also be minimized if one or two    representative standards    are
available to adjust the initial calibration coefficients and by monitoring instrument performance with
a      measurement control program     .  To determine assay bias, multiplicity counter results can be
compared against calorimetry, analytical chemistry, or other NDA instruments such as tomographic
gamma-ray scanners.  If the multiplicity counter measurements are to be integrated with the
accountability system computer, the instrument computer hardware and software should be
selected to provide a compatible    software communications link    .  The communications link is used
to transfer assay results, random and systematic errors, and measurement control data to the
accountability computer.

D . Multiplicity Counter Selection Criteria

The first column of Table 8.1 summarizes the plutonium sample properties and facility
operating criteria that affect the choice of multiplicity counter, conventional coincidence counter, or
calorimeter for the material types to be assayed.  The second column summarizes the counter
design features that are needed, or that must be optimized, to meet these requirements.  Table 8.1
can be used to prioritize the selection criteria, and then to prioritize the needed counter features.
Then it should be possible to decide if an existing conventional coincidence counter or multiplicity
counter design should be used or if a new custom design is required.
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Table 8.1.  Influence of sample and facility criteria on multiplicity counter selection.

Sample and Facility Criteria Important Multiplicity Counter Feature

Sample container size Assay chamber size
3He tube length
Flat spatial efficiency profile

Distributed material Flat spatial efficiency profile

Assay RSD/Count time High detection efficiency
Number of 3He tubes

Low plutonium mass Detectability limit calculation
External shield needed

High plutonium mass Low counter die-away time
Low counting deadtime
Cadmium-lined sample well
Well sized to prevent double batching

High sample (α ,n) rate Low counter die-away time
Flat energy spectrum efficiency

High sample moderation Flat energy spectrum efficiency
Neutron poisons in sample Cadmium-lined sample well

Flat energy spectrum efficiency
High 241Am content in sample Thick cadmium liner on sample well
Irradiated samples Lead-lined sample well
Unsealed process materials In-line counter design
Canned, sealed samples Free-standing, at-line counter design
Heavy sample/end plug Sample lifting mechanism
Low sample entry needed Front-loading design
High room background External shield needed
Weight/size constraint No external shield

Number of 3He tube rings
Shorter 3He tube length

Low assay bias required Flat spatial efficiency profile
Flat energy spectrum efficiency
One-two representative standards
Measurement control program
Validation by calorimetry, analytical chem.

Facility system integration Software communications link

E . Commercially Available Multiplicity Equipment

Part III of this Applications Guide is a survey of existing passive neutron multiplicity
counters that have already been developed for DOE facility applications.  Several of these counter
designs are available from commercial vendors of NDA equipment.  Or, if another existing design
developed at Los Alamos National Laboratory provides all of the needed design features, the
design package can be made available to other DOE facilities and to commercial vendors as soon as
the design concepts are fully tested and proven.
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The technology required to fabricate and test neutron multiplicity counters has already been
transferred from Los Alamos to several U.S. companies that manufacture NDA equipment.
Important components of the transferred technology include the following:  electronics junction
box design, Amptek integrated preamp/discriminators, shift-register-based multiplicity electronics
package, 3He tube placement and moderator design, and data analysis algorithms.  The Windows
NCC software package described in Part VI has also been provided to DOE facilities and to U.S.
vendors.

At this point in time, there are three U.S. vendors that can supply neutron multiplicity
counters and/or multiplicity electronics packages:

Canberra Industries, Inc.
800 Research Parkway
Meriden, CT 06450
203-639-2256

Antech Corporation
Unit 3, Thames Park
Lester Way, Wallingford
Oxfordshine  OX10 9TB, UK
US:  303-430-8184

BNFL Instruments, Inc.
278 DP Road
Los Alamos, NM 87544
505-662-4377

F . Los Alamos Support Options

If an existing multiplicity counter design does not provide all of the needed features, a new
design is required.  The Los Alamos Safeguards Science and Technology Group can advise on the
suitability of existing multiplicity counters for specific applications and can assist with the
procurement of custom multiplicity counters.  The existing commercial vendors can carry out some
design modifications and can prepare new electrical and mechanical blueprint packages as needed.
If substantial changes from existing designs are required, involvement of the Los Alamos design
team is advisable to ensure that the desired performance will be achieved.

Support from Los Alamos can cover a range of options.  The design team can carry out
Monte Carlo calculations to prepare the design specifications and estimate the expected
performance characteristics.  The team can also provide a complete design package, construct a
prototype counter, and measure representative process materials to validate the expected
performance.  Or, Los Alamos can participate in the process of data analysis algorithm
development, acceptance testing, software integration, and documentation.  Future versions of the
new counter can then be obtained through commercial vendors.

Members of the Los Alamos Safeguards Science and Technology Group (NIS-5)
knowledgeable about multiplicity counting include the following:

Diana Langner, 505-667-2874, dlangner@lanl.gov
Merlyn Krick, 505-667-2446, mkrick@lanl.gov
Howard Menlove, 505-667-2182, hmenlove@lanl.gov
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Mark Pickrell, 505-665-5098, mpickrell@lanl.gov
James Stewart, 505-667-2166, jstewart@lanl.gov
Bill Harker, 505-667-2163, bharker@lanl.gov
Norbert Ensslin, 505-667-2444, nensslin@lanl.gov

The group’s mailing address is NIS-5, Mail Stop E540, Los Alamos National Laboratory,
Los Alamos, NM 87545, and the FAX number is 505-665-4433.

G . Typical Procurement Costs

Neutron multiplicity counter procurement costs vary greatly depending on counter size,
number of 3He tubes, and the level of custom design effort.  The cost for obtaining a counter of an
existing design “off the shelf” from a commercial vendor is in the range of $200,000 to $500,000
depending on the size of the counter (small sample cavity up to 55-gal. drums).  The cost for
obtaining a new counter that requires a new design, new hardware and software, and extensive
testing and documentation is in the range of $350,000 to $750,000.  For multiplicity measurements
with existing conventional coincidence counters, where it is only necessary to add a commercially
available multiplicity electronics package, the cost of that package is roughly $9000.

H . Routine Maintenance Requirements

Maintenance requirements for thermal neutron multiplicity counters based on 3He tubes and
their associated electronics are minimal.  The 3He tubes are very rugged, stable, and reliable; of the
thousands of tubes currently installed throughout DOE and international facilities, there have been
no reported failures.  The Amptek preamp/discriminator packages are reliable, with no reported
failures after installation and setup.  Low voltage power supplies, HV power supplies, and the
multiplicity shift register may require infrequent repair or replacement.

The most common routine maintenance activity is replacement of the desiccant capsules in
the desiccant holder/indicators built into the junction boxes, as humidity gradually seeps in.  The
most commonly encountered problem in facility environments has been loosening of cables or
connectors, causing loss of high or low voltage to the electronics, or loss of the return signal.
Careful, frequent measurement control tests such as background and bias runs are strongly
recommended to watch for and diagnose these problems.  Last but not least, the software package
used to collect and analyze data will require periodic “maintenance” to keep up with computer
upgrades or changing facility reporting requirements.
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