
Optimizing Shared Programming Environments on Tri-lab HPC Resources:
Standardizing Uenv

Bodhi Rubinstein | Los Alamos National Laboratory | HPC-ENV
Mentors: Francine Lapid, Shivam Mehta, Paul Ferrell

Uenv is a tool that provides “user environments” containing scientific software stacks for
use on shared HPC resources:
• Developed and maintained by the Swiss National Supercomputing Centre (CSCS).
• Pseudo-containerized software stacks stored as a single Squashfs file (compressed

directory tree).
• Builds using Stackinator, a CSCS tool for building Spack software stacks.
• Stored inside a shared OCI (Open Container Initivate) artifact registry.
• ORAS (OCI Registry As Storage) used to push/pull Squashfs artifacts from registry.
• Deployed by mounting a Squashfs file inside a non-initial mount namespace, using a

small setuid binary developed by CSCS called Squashfs-mount.

Uenv – CSCS

Stackinator is a tool that builds Spack
software stacks from a “recipe”:
• Specifically designed for HPE Cray

EX systems.
• Wraps Spack, the package

manager for supercomputers
developed at Lawrence Livermore
National Lab (LLNL).

• Generates Spack configs and make
files needed to build the Spack
environments that are packaged
into a software stack.

• Stackinator is very similar to the
process.sh script in LANL’s Tri-lab
Computing Environment (TCE).

• Outputs a single Squashfs file
containing the stack and its meta
data.

TCE/CPE Workflow - LANLAbstract
High-performance computing (HPC) systems are designed to provide a reliable and large-
scale computing platform for a wide variety of scientific applications. The programming
environment is a key component that provides a stable foundation on which software for
a cluster is built. Being able to build, maintain, configure, and deploy accessible software
to meet the wide variety of users’ needs is very involved and can be an improvised,
fragile, and messy process. At Los Alamos National Laboratory (LANL), an additional
challenge arises with the need to share reproducible software stacks for use at Lawrence
Livermore National Laboratory (LLNL) and Sandia National Lab (SNL), as part of the NNSA
Tri-lab collaboration. Uenv is a tool built by the Swiss National Supercomputing Centre
(CSCS) aimed to address this challenge. Uenv optimizes this process by packaging and
preserving entire scientific software stacks as “user environments” inside of a single
Squashfs file, which are stored in a shared container artifact registry. Although Uenv has
proved to be a very useful tool on CSCS’ Alps supercomputer, much of their
implementation is system specific and not generically accessible to HPC teams at other
institutions. HPC systems with higher security considerations, such as those at the Tri-
labs, pose even more of a challenge for deploying Uenv. This presentation showcases the
deployment of a standardized Uenv proof of concept on a LANL HPC system, and the
contributions back to CSCS to improve the accessibility of their production Uenv tool.

Uenv Workflow - CSCS

Uenv Workflow - LANL

Standardizing Uenv
Feature Original (CSCS) Changes (LANL)

Install

1. Meson builds subproject
dependencies using
wrapdb.mesonbuild.com.

2. Install script uses CCàgcc-
12 and CCXàgcc++-12.

1. Meson builds subproject dependencies
from local files or GitHub (within LANL
firewall).

2. Install script uses CCàcc and CCXàCC
for Cray compiler wrappers.

Config

User level runtime configuration
in: $HOME/.config/uenv/config
• Default Uenv repo
• Colors

Same user level runtime configuration.
Additional global runtime configuration:
• TOML config file; Parsed using toml++.
• Configures: Mounting options, local

repos, and OCI registry location.

Build

1. uenv build uploads the
uenv label and recipe as a
tarball to its (hardcoded)
CSCS CI/CD build pipeline.

2. The CI/CD pipeline uses a
Slurm runner to initialize
the Stackinator build
process inside a batch job.

3. Once the Slurm runner
finishes building, it pushes
the Squashfs file to the OCI
artifact registry.

1. Any commit to the LANL Uenv GitLab
adding or changing an existing Uenv
recipe triggers the CI/CD build pipeline.

2. The CI/CD pipeline uses a GitLab runner
that configures and builds the Uenv(s)
using Stackinator (submodule). Runs
inside a pre-built container.

3. Once the GitLab runner finishes building
the Uenv, it pushes the Squashfs file to
the LANL Quay OCI artifact registry.

Registry

• Uses JFrog OCI artifact
registry. URL is hardcoded
inside of Uenv.

• Uses ORAS tool to push/pull
uenv images.

• Registry uses three
namespaces: build, deploy,
and service.

• Uses Quay OCI artifact registries. One
registry is accessible to the open (non-
classified) network, and the other is
accessible to the restricted (classified)
network.

• OCI registry location can be defined
inside the global configuration file
instead of hardcoded.

Repos

• Default user repository found
in $HOME/.uenv/repo, but
can be changed inside the
user configuration file.

• A separate Uenv repository
can be specified when
running any Uenv command
using –repo <repo_path>.

• Same user repository features.
• Adds the ability to define a list of (pre-

existing) local system repositories in
global config file.

• Local repos are included by default in
addition to the user repo when listing
available uenv (uenv image ls).

• When loading a uenv (either uenv run or
uenv start), if it cannot be found in the
user repo, the local repos are
sequentially searched by default.

Mount

• Passes Uenv environment
(execvpe) to CSCS tool,
Squashfs-mount, which uses
recursive mount system calls
to mount each given pair of
<squashfs>:<mount_point>

• Setuid to root (EUID->0) to
enter a non-initial mount
namespace (unshare system
call). The uenvs are only
mounted for the user that
loaded it.

• Returns to user and executes
either a shell (uenv run) or a
command (uenv start).

• If Squashfuse option (rootless) in the
global config is set to true, Uenv passes
the --squashfuse flag to the LANL
patched Squashfs-mount tool. Otherwise,
it uses the setuid method.

• Enters non-initial user and mount
namespace. EUID/EGID mapped to root
(0) inside user namespace to run
recursive FUSE (Filesystem in Userspace)
mounts without needing any outside
privileges.

• Forks process, then child executes
shell/command inside another (nested)
non-initial user namespace with
EUID/EGID mapped to outside user. User
is illusioned that nothing has changed.

• Parent waits for child to terminate, then
recursively unmounts all uenv to clean up
leftover Squashfuse processes.

Stackinator

Swiss National Supercomputing Center (CSCS):
• Contributing LANL proof of concept standardization patches back to CSCS.
• Working with Uenv developers to implement features that transition Uenv into a

generic and widely accessible production tool.
National Nuclear Security Administration (NNSA) Tri-labs:
• Los Alamos National Laboratory (LANL), Lawerence Livermore National Laboratory

(LLNL), and Sandia National Lab (SNL).
• Collaborating with HPC teams at the Tri-labs to eventually replace the current Tri-lab

Computing Environment (TCE) with shared OCI artifact registries containing Uenv.
• Uenv would be shared and consistent between Tri-lab HPC systems, benefiting

scientists running applications across multiple Tri-lab resources.

CollaborationFuture Work

Motivation

The end goal is to transition to using Uenv and Stackinator as the
primary framework for the programming environment in production
on the next NNSA Advanced Technology System (ATS-5). Some of the
features that need to be implemented include:
• Parameterizing recipes inside of Ansible.
• Develop non-CI/CD, local build pipeline for users.
• Add OpenMPI as an MPI option for Stackinator recipes (currently

Cray MPICH).
• Incorporate existing Spack build cache into Uenv build pipelines.

• LANL’s current programming environment framework is an improvised solution to the
difficulties with maintaining the Cray Programming Environment (CPE) that Cray EX HPC
systems provide. Most institutions running Cray EX systems have had to build their own
improvised solutions to this problem, so standardizing Uenv provides a common tool for
deploying alternative user environments on those systems.

• Spack is designed in a way that makes it great at building throw-away software, but bad
for building long term, supportable environments due to the many problems involved in
getting it to be reasonably consistent and stable in what it builds. Uenv builds software
using Spack the way it was intended: as throw-away, preserved environments, whereas
TCE struggles with trying to support its Spack builds long-term.

• Unlike TCE, when a user loads a uenv, they can be assured a consistent environment.
There’s no chance of accidentally “breaking” a piece of software once it’s been built.

• Provides users a modular workflow where they can mix and match toolchains and even
mount more than one uenv at a time.

• Allows for integration with containerization services (Charliecloud). Uenv are packaged
as a single Squashfs file, so they can be used as the Filesystem Layer when building a
container.

• LANL relocates the Cray
Programming Environment (CPE)
into user space as packaged
executables inside the /CPE
directory (top path).

• Additional packages are built with
Spack inside the Tri-lab
Computing Environment (TCE;
middle path).

• All Cray module files are managed
by Ansible (bottom path).

• TCE uses five independent Spack
configs in 1000+ line YAML files to
manage eight LANL HPC systems.
Especially problematic since
Spack is bad at incremental
updates to its environment.

• A significant amount of time and
effort goes into supporting and
troubleshooting software built
with TCE.

ROSY Submission ID: #88f75a72 LA-UR-25-28268Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

