1% Los Alamos

NATIONAL LABORATORY

MarFsS is Getting
Rusty

Benjamin Schlueter
Mentors: Dave Bonnie, Garrett Ransom

08/07/25

ROSY ID: 00fbd36a
LA-UR-25-28204

N
M‘ﬁeﬁé Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA. 08/07/2025 1



Segmentation fault (core dumped)

oooooooooooooooo



Rustvs C

- Rust enforces strict rules at compile time to catch bugs

- Nearly as fast as C: No garbage collection

YOU HAVE FAILED FAILURE ISNOT AN OPTION <T>

YOUR BORROW CHECK It's a Result <T, E>

1% Los Alamos

AAAAAAAAAAAAAAAAAA



MarFS

-

- LANL’s homegrown Campaign
storage system

- Serves as a middle tier between
scratch and the archive
- Resilience is highest priority

- Only realistic to rewrite modules

over time
- need proof of concept

Los Alamos

AAAAAAAAAAAAAAAAAA

Resilience

Scratch (Lustre)

Campaign (MarFS)

Archive (HPSS, soon Marchive)

Speed



Integrating Foreign Code with Rust

- Rust has a Foreign Function Interface
feature

- Two integration steps:
Generate FFI bindings (definitions)

Link foreign library (implementations)

AAAAAAAAAAAAAAAAAA




Proof of Concept

- Proof of concepts:
- streamutil (Rust calling C)
- Data Abstraction Layer (Rust
called by C)
- Two integration steps:
- definitions: bindgen
- implementations: compiler vars

- Automate and never think about it

again!

1% Los Alamos

NATIONAL LABORATORY

Rust calling C

Rust main

I

FFI (Rust
bindgen .- 7| definitions)

I

C header C Library

T compile
separately

C calling Rust

C main
A
Y
FFI (C
cbindgen .- ¥ header)
Rust
compiler
Rust source - » Rust Library



Calling C From Rust

Easy: Just use FFI Rust definition

- Sometimes have to do gross unsafe conversions to FFI C types

AAAAAAAAAAAAAAAA

0000000000



Calling Rust from C

-

- Only C compatible components can be in the FFI

- Any Rust features can be used in function
implementations

- Cannot use high level Rust features like Traits

- Summary: think of C when designing

Los Alamos

AAAAAAAAAAAAAAAAAA

argu me$

.

Unsafe type

"| conversions

/

l

Function implementation
based on safe Rust
types and features

|

convert return
value back to

C type

return C type
—




Performance

- No significant performance difference between Rust and C I/O (on VM)
- Used nix: thin safe syscall wrapper

Rust vs C Read Perfarmance Rust vs C Write Performance
6600
6400 3800 1
6200 3700 4
6000 T
0 » 3600
a fos]
= 5800 =
3500
5600 -
5400 - 3400 4
5200 -
3300 1
T T T T
read_c read_rust write_c write_rust

‘@ Los Alamos 08/07/2025

AAAAAAAAAAAAAAAAAA



Conclusion

Integrating Rust and C is performant and easy once you learn the tricks

| encourage anyone looking to add safety and niceties to try Rust

‘@ Los Alamos 08/07/2025 10

AAAAAAAAAAAAAAAAAA



I'T'IElk'EElITIEI'I"IE.D]‘g

‘@ Los Alamos 08/07/2025

AAAAAAAAAAAAAAAAAA



	MarFS is Getting Rusty
	Slide Number 2
	Rust vs C
	MarFS
	Integrating Foreign Code with Rust
	Proof of Concept
	Calling C From Rust
	Calling Rust from C
	Performance
	Conclusion
	Slide Number 11

