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Segmentation fault (core dumped)
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Rustvs C

- Rust enforces strict rules at compile time to catch bugs

- Nearly as fast as C: No garbage collection

YOU HAVE FAILED FAILURE ISNOT AN OPTION <T>

YOUR BORROW CHECK It's a Result <T, E>
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MarFS

-

- LANL’s homegrown Campaign
storage system

- Serves as a middle tier between
scratch and the archive
- Resilience is highest priority

- Only realistic to rewrite modules

over time
- need proof of concept
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Resilience

Scratch (Lustre)

Campaign (MarFS)

Archive (HPSS, soon Marchive)

Speed



Integrating Foreign Code with Rust

- Rust has a Foreign Function Interface
feature

- Two integration steps:
Generate FFI bindings (definitions)

Link foreign library (implementations)
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Proof of Concept

- Proof of concepts:
- streamutil (Rust calling C)
- Data Abstraction Layer (Rust
called by C)
- Two integration steps:
- definitions: bindgen
- implementations: compiler vars

- Automate and never think about it

again!

1% Los Alamos

NATIONAL LABORATORY

Rust calling C

Rust main

I

FFI (Rust
bindgen .- 7| definitions)

I

C header C Library

T compile
separately

C calling Rust

C main
A
Y
FFI (C
cbindgen .- ¥ header)
Rust
compiler
Rust source - » Rust Library



Calling C From Rust

Easy: Just use FFI Rust definition

- Sometimes have to do gross unsafe conversions to FFI C types
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Calling Rust from C

-

- Only C compatible components can be in the FFI

- Any Rust features can be used in function
implementations

- Cannot use high level Rust features like Traits

- Summary: think of C when designing
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Unsafe type

"| conversions
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Function implementation
based on safe Rust
types and features

|

convert return
value back to

C type

return C type
—




Performance

- No significant performance difference between Rust and C I/O (on VM)
- Used nix: thin safe syscall wrapper
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Conclusion

Integrating Rust and C is performant and easy once you learn the tricks

| encourage anyone looking to add safety and niceties to try Rust
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