
Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

MarFS is Getting Rusty
Benjamin Schlueter, Clemson University (benjamin.schlueter1@gmail.com) – Mentors: Dave Bonnie, Garrett Ransom (HPC-INF)

Conclusion
Integrating Rust and C is performant, simple, and easy to automate once the
details are known. Rust as a language is pleasant to work with compared to C,
with its efficient high level features and safety conventions. Smart Rust code is
equally or potentially more efficient than C. Anyone who is looking to add some
resilience and niceties to a program should consider Rust.

Vertical Spacer Between Sections– DO NOT PRINT

Primary LANL Blue

🡪Additional Logos
can be placed in line
with the blue
Principal
Investigator and
Affiliations box.

Secondary LANL Blue

Type is Arial🡪

Go to View>Guides to
view layout guidelines.

*Character spacing can be
set in the Home Tab on the

Toolbar below font name

Background

MarFS is LANL’s in house campaign storage system,
serving as a middle tier between scratch and the
archive. It is designed to be as safe and redundant as
possible, while providing adequate speed. There is
interest in converting MarFS from C to Rust to further
improve resilience, however, a full rewrite is unrealistic.
MarFS must be converted modularly, where individual
parts are rewritten and integrated with the C. This
project tests if integrating Rust with MarFS C code is
realistic to implement and performant.

Implementation Details

Performance
A benchmark was written to compare performances of the C and Rust DAL’s.
The benchmark involved a simple put of 200MB and a series of 1 MB gets at
sequential offsets. Each plot contains samples from 5000 iterations. The data
shown is from a virtual machine, where results were unpredictable. Often, the
Rust would outperform the C, but because the VM was unstable, we are not
drawing conclusions from these results. The benchmark was run on a real
system and the Rust and C DAL’s performed near identically as expected.

Proof of Concept
Two pieces of code were written to prove that Rust
can be integrated with the MarFS C code. To do
this, Rust’s Foreign Function Interface (FFI) feature
is used, which uses tools to convert code from one
language into a form the other can understand.
Once the FFI definitions are generated, the library
with the implementations must be built / linked. The
sections/figure below show the integration process.

streamutil

The first piece of code is the streamutil tool, which
gives an admin a command line interface to call low
level MarFS functions. This is a Rust application
that calls MarFS C functions. To generate the FFI,
the Rust provided bindgen tool was used to parse
the C header into Rust definitions. Compiler
variables are set to link the MarFS C library to the
Rust code.

Data Abstraction Layer

Second is the Data Abstraction Layer, which is
provides higher levels of C code with an object
store like interface for data access. Similar to
bindgen, the cbindgen tool parses a Rust source
file into a C header. A variable can be set to tell the
Rust compiler to output a static or shared library
that C can link to.

Rust vs C
C:
- programmer allocates and frees memory
- few data validity checks
- very efficient and low overhead

Rust:
- memory allocated and freed behind the scenes
- enforces strict rules to prevent bugs
- very efficient: no garbage collector and advanced

optimization
- provides convenient high level features to the

programmer

Rust Prevents:
- Segmentation Faults
- Double Frees
- Buffer Overflows
- Dangling References
- Race Conditions

Does Not Prevent:
- Memory Leaks
- Deadlocks
- Any memory errors in

unsafe blocks
- Logic Errors

The integration process is easy to
automate with a build script. Once
automated, it should work hassle free.
All types and features in the FFI must be
C compatible. When calling a C function
from Rust, unsafe type conversions from
Rust to C types must be made. For
example: casting String to *mut
c_char. However, any Rust features
can be used inside function definitions.
The chart on the right shows the ideal
structure of an C compatible Rust
function. Also, advanced Rust features
like Traits with no direct C translation
cannot be in the FFI.

ROSY ID: 00fbd36a LA-UR-25-28194

mailto:benjamin.schlueter1@gmail.com

