
11Managed by Triad National Security, LLC., for the U.S. Department of Energy’s NNSA.

Mixed Compute 
Environments with 
OpenCHAMI
HPC-DO

Sean Gibson
Richard Kim
Samuel Quan
Travis Cotton (Mentor)
Thomas MacKell (Mentor)
ROSY: d3711a6a



2

Growing Demand for Mixed Workloads

1. Moving beyond traditional HPC workflows
a. Kubernetes, Run:ai, similar

b. Batch-scheduling vs cloud-based WLMs

2. Mixing contexts:
a. HPC: finite resources, infinite workload demand (training)

b. Cloud: infinite resources, finite workload demand (inference)

3. We would like to run both types of WLM on the same cluster



3

Challenges for Mixed Workloads
1. Static configuration of resources may lead to idling nodes

2. Downtime, fluctuating resource demands
a. Idling nodes

b. Take nodes down to swap to other workload domain

3. Must be able to quickly swap and scale as demand changes

4. Different WLM will require different setups and compute images



4

Deploying Slurm & Kubernetes with OpenCHAMI
1. We deploy Slurm and K8s as our test workload managers

a. Configure each image in Podman with the required resources
i. K8s: kubectl, kubeadm, kubelet, kube-proxy

ii. Slurm: slurmd, munge, chronyd

iii. Both: networking setup

2. Setup our head node in a production environment with OpenCHAMI
a. K8s: calico, storage classes, persistent volumes & claims

b. Slurm: slurmctld, munge

3. Use OpenCHAMI to boot a node with the image



5

OpenCHAMI

1. OpenCHAMI is a cloud-like software that helps manage HPC environments. 



6



7

1. Custom Images in BSS

a. Save custom image for Slurm/K8s installs

i. kernel

ii. initrd

iii. rootfs

b. Store in BSS

Configuring Environments w/ OpenCHAMI



8

Configuring Environments w/ OpenCHAMI

2. Groups in Cloud-init 

a. File payload (runcmd)

i. Kubernetes: joining 
control plane

ii. Slurm: munge setup

iii. Both: starting services



9

Configuring Environments w/ OpenCHAMI



10

Swapping between Workloads

1. With WLMs setup, now we need a way to quickly swap and scale compute 
resources between them

2. Goals
a. Quickly swaps nodes

b. Support heterogeneous workloads to run on the same cluster
i. Slurm and Kubernetes



11

SPREAD

1. Command Line Tool: SPREAD
a. Quick swaps 

b. Heterogeneous workloads

c. Supports nodesets

d. Manages post-boot scripts

Figure 1 SPREAD© logo 



12

SPREAD: Managing Custom Images

1. Capabilities
a. addImage <initramfs> <rootfs> <kernel> opt: <ci-group(s)>

i. Stores image into minIO/S3/local

ii. creates cloud-init config

b. deleteImage

c. listImage(s)



13

SPREAD: Switching Images

1. Capabilities
a. change <node> <image_name>

i. Changes BSS params & image for 
node

ii. remove from old ci-group

iii. add to new ci-group

iv. runs optional config commands

v. Download and load new kernel on 
node

vi. Create symlink to catch reboots



14

SPREAD: Speed Test

1. Compare kexec vs traditional reboot 
node ready times

a. Measure time from reboot command 
to availability on the workload 
manager

b. Use scontrol/kubectl logs to get the 
time first available

2. We find kexec provides significant 
speedup

a. Slurm: 27.8% average speedup
b. K8s: 24.1% average speedup

Kexec vs Reboot Ready Times for Slurm & K8s



15

Slurm Slinky

Slinky (Deployed + Tested)

a. Run Slurm in K8s

b. Auto-scale Slurm 
clusters running as 
K8s pods



16

Run:ai

Run:ai (Deployed)

a. GPU orchestration tool

b. no GPUs

i. fake-gpu-operator

ii. Github issue



17

1. Deployed Kubernetes and Slurm images with OpenCHAMI

2. Used OpenCHAMI to swap nodes between compute environments

3. Built command line tool SPREAD to manage swapping

4. Deployed and tested containerized resources on our cluster

a. Slurm Slinky

b. Run:ai

Conclusion



18

Future Directions

1. Test SPREAD on larger clusters

2. Optimize ready times (dracut)

3. Integrate SPREAD into OpenCHAMI

4. Daemon-ize SPREAD to hold internal states and automatically scale 
workloads

5. Partition intra-node resources across workloads



1919

Questions?



20

What does SPREAD stand for?

QUESTIONS

Shell-based Provisioning for Resource Environment Allocation and Distribution


