
Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

High-Performance Compression of Scientific 

Volume Data Using Learned 3D Gaussian Models
Landon Dyken1,2, PhD Student; Nathan DeBardeleben2, PhD.   |   1University of Illinois Chicago; 2Los Alamos National Laboratory, HPC-DES

Introduction
Why is compression needed?

As HPC systems continue to increase in scale, the datasets 

output by scientific simulations are becoming larger and more 

complex. Effectively using these datasets for end user tasks 

presents a challenge, as they regularly exceed the memory of 

user systems. To address this, compression methods are needed 

that can reduce data’s memory footprint and support interactivity.

How is a 3D Gaussian model trained?

Once a collection of 3D Gaussians is initialized, 

they can be trained to reconstruct a volume 

using gradient descent. This is done by 

sampling the 3D Gaussian model and the 

ground truth, computing the reconstruction loss 

between the two sets of sampled points, then 

backpropagating gradients to the individual 3D 

Gaussians. An example of this process is 

shown in Figure 3. At figure right, a depiction of 

how the Gaussians may change after gradients 

are applied is shown. Note how the Gaussians 

scale and rotate to better match the geometry 

of the ground truth. 

Method
What are 3D Gaussians?

In this project, we explore the potential for compressing scientific 

volumes by approximating them as collections of 3-dimensional 

Gaussians. Each Gaussian is defined as a scaled and rotated 

distribution around a point in 3D space. By using fewer 

Gaussians than data points in the ground truth, and removing the 

need to store connectivity information, a 3D Gaussian model can 

represent a dataset using a fraction of the original memory. 

How is a 3D Gaussian model created?

The first step of creating a 3D Gaussian model is to initialize a 

collection of Gaussians from the original volume. To do this, we 

first discard the volume’s connectivity information, leaving only its 

data points with attached scalar values. These data points are 

extended to become 3D Gaussians with a spherical distribution 

and scaled depending on the density of surrounding points. This 

process is shown in Figure 2. In practice, we discard some 

fraction of data points before initializing, depending on the 

desired compression ratio for the trained model.  

Results
How do 3D Gaussian models perform for compression?

We present results for compression factor, reconstruction quality (PSNR, higher is better), training time, and rendering for 3D Gaussian models 

trained on two separate datasets. All models were trained for 16,000 iterations on an Nvidia A40 GPU. Testing was done using 8 million ground 

truth samples not seen during training. 

→

to 

view layout guidelines.

*Character spacing can be set 

on the

below font name

ROSY#: 81f072d2  LA-UR-25-28269

Figure 2. 3D Gaussian initialization

How is training implemented?

For a 3D Gaussian model to accurately represent a dataset, many iterations of training are required, necessitating optimized GPU performance 

to keep training times low. To accomplish this, we implement 3D Gaussian sampling and backwards pass gradient computation using custom 

Cuda kernels, and hook these into our PyTorch training context, allowing our method to proceed efficiently on state-of-the-art Nvidia GPUs.

Compression 5x 10x 20x 40x 80x 160x

PSNR 26.96 26.88 26.57 26.10 24.66 14.99

Training Time 5 min 23 sec 3 min 7 sec 2 min 3 sec 1 min 38 sec 1 min 21 sec 1 min 19 sec

Figure 1. Compression of volume data

Renders

Ground

Truth
Mito Dataset

235 MB

5.54M Cells

972K Points

Compression 5x 10x 20x 40x 80x 160x

PSNR 20.21 20.22 20.12 19.72 18.88 15.81

Training Time 16 min 14 sec 8 min 44 sec 5 min 13 sec 3 min 23 sec 2 min 32 sec 2 min 8 sec

Ground Truth SF1 Dataset

594 MB

14.0M Cells

2.46M Points

Figure 3. 3D Gaussian training


	Slide 1

