
Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

Virtualization Pipeline For Testing and Validating Lustre Environments
Johnathan Martinez | Mentor: Thomas Bertschinger, Jarrett Crews | HPC-INF

Introduction
WHAT IS LUSTRE?
Lustre is an open-source, massively parallel file
system designed for high-performance computing
environments. It excels at handling large-scale data
by allowing clients to leverage bandwidth across
multiple servers simultaneously. This architecture is
crucial for I/O-intensive workloads like modeling and
simulation, making Lustre an essential part of the
HPC ecosystem.
A typical Lustre environment consists of three key
components: Metadata Servers (MDS) that manage
file attributes and directory structure, Object Storage
Servers (OSS) that store the actual file data, and
clients that access the file system.

TESTING CHALLENGES
While parallel file systems offer linear I/O scaling, they
introduce complexity through inter-server
communication requirements. Testing Lustre requires
configuring multiple components (client, MDS, OSS)
for each test environment. This pipeline simplifies this
process by creating virtual machines (VMs) to
simulate a Lustre environment, enabling safe
validation before production deployment.

Go Implementation
WHY GO?
Go serves as the foundation for the pipeline implementation,
chosen for its robust concurrency model, strong type system, and
comprehensive error handling capabilities. The language enables
the creation of a reliable infrastructure orchestration layer while
maintaining clean automation logic and error management.
LIBVIRT-GO
A low-level Go package is utilized where it provides direct
bindings to the libvirt API. This allows the application to
communicate directly with the libvirt service, enabling control of
virtual machine lifecycle operations.
LIBVIRTXML
A high-level Go package offers structured representations of
libvirt's XML configurations, simplifying the creation and
manipulation of definitions for virtual machine domains, network
configurations, and storage pools and volumes
CODING ARCHITECTURE

Virtual Infrastructure
STORAGE PROVISIONING
Libvirt enables the allocation of dedicated storage for VMs
through storage pools. These pools are partitioned into volumes
that are attached to VMs as block devices.

For the pipeline, a pre-configured base image with the required
operating system serves as backing storage for any volume
created. When a new VM is provisioned, a storage volume is
created from this template and assigned to the guest machine

Each guest VM automatically mounts a shared file system that's
configured through libvirt XML definitions upon creation of a
guest. This shared storage architecture serves two critical
functions: it enables the execution of bash scripts directly inside
the VMs without manual file transfers, and it allows a centralized
location to collection logging information related to the state of
each guest.
NETWORKING
The application environment uses libvirt's integrated dnsmasq
service to automatically assign IP addresses to VMs via DHCP.
This ensures each virtual machine receives a unique network
identity upon creation, enabling seamless communication
between the pipeline controller and guests. In addition, it
facilitates communication between Lustre components i.e., MDS
OSS, and clients.
VIRTUAL MACHINE LAYOUT
VMs are created with specific roles that mirror a typical Lustre
environment, plus an additional specialized build role. The
environment consists of:

1. Metadata Server (MDS) VM
2. Object Storage Server (OSS) VM
3. Client VM
4. Build VM

The Build VM serves as a centralized compilation environment,
generating Lustre and ZFS RPM packages on a shared
filesystem. This shared storage architecture allows all other VMs
to access and install these packages according to their specific
roles, eliminating redundant compilation work and ensuring
consistency across the environment.

Go Code

go-libvirt package: Connects to libvirt service

XML Marshaling (Go Struct to XML)

libvirt-go-xml package: Define VMs as Go structs

libvirt: Manages VMs

QEMU: Creates and runs VMs

MDS00 MDS01 OSS00 OSS01

Client

MDS00 MDS01 OSS00 OSS01

Client

Lustre Environment

virtio-fs

Build Pipeline

PRIMARY CHALLENGE
ERROR RECOVERY
The primary challenge in this pipeline implementation is robust
error recovery. When errors occur, the application must carefully
unwind all previously completed steps in reverse order. This
complexity arises because libvirt definitions persist independently
of the program's execution state. Failed pipeline runs leave
behind artifacts such as VM instances, storage volumes, and
networks in the libvirt environment. Subsequent pipeline runs will
encounter these past resources, causing cascading failures.

Figure 1: Illustrates the process of building and
installing Lustre packages

Define Build VMUpdate and install
base image dep.

Build VM compiles
ZFS and Lustre

RPMS

Define Lustre
Environment VMs

Lustre Environment
VMs configure and

install Lustre and ZFS

Run tests Parse Results

Start

Cleanup

End

Figure 3: Depicts the Lustre environment being set up, along with how scripts
are shared between servers

Figure 2: Shows the interaction between Go packages and hypervisor to make
guests

RROSY ID: 3da09f09 LA-UR-25-28261

