
Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

Commit with Reason: Managing Workspace State in Agentic

Scientific Workflows
Warren D. Graham*† (wdgraham@lanl.gov); Nathan A. DeBardeleben (ndebard@lanl.gov), PhD†
*Coastal Carolina University, Department of Computing Sciences; †Los Alamos National Lab, HPC-DES

URSA Overview
What is URSA?

URSA is a modular agentic ecosystem for automating scientific

and engineering tasks. The core idea is to let small, specialized

agents be combined into a pipeline to address tasks from

running physics simulations to data analysis. This include

separate agents for tasks say as research, planning, code writing

and execution, and version control, among others. By coupling

Large Language Model (LLM) reasoning with domain-specific

tools, URSA aims to accelerate research workflows and make

them more reproducible.

Structured Commit Messages

The git agent can run any git commands, or other commands

deemed safe and required for version control management,

via its run_cmd tool. When it chooses to create a new commit, it

follows a rough layout for how a detailed commit message

should be worded.

Execution Agent
Targeted Edits

The original execution agent could only overwrite entire files. I

added an edit_code tool that takes a pair of old and new

strings, applies a single replacement, then renders and prints a

unified diff so the user can see exactly what changed.

Why a Git Agent?
Our existing agents can perform tasks such as research,

planning and modifying our workspace, but without version

control these workspace changes live in a black-box. We need

to capture why each modification happened to determine where

mistakes happen and reverse them automatically or through

user interaction.

Example Problem
Integer Summation

In our integer sum example we ask the agents to sum the first

N integers using three methods: a for-loop, Python’s built-in

sum, and the constant-time formula and benchmark them.

The execution agent codes and benchmarks them while the git

agent manages the repo; the shown output confirms all three

give the same result.

Figure 1a. Example URSA workflow diagram

Figure 1b. Unified-diff preview

Git Agent Architecture
LLM-Guided Git Management

After the execution agent completes a step, the git agent is given

access to the workspace and a summary of the execution

agent’s actions. Using this information and its tool, it can

explore the workspace and make git-related changes.

Figure 2a. Safety check blocking git clean from deleting untracked files.

Safety Checks

Previously batched run_cmd tool calls in the execution agent

and the new git agent bypassed safety checks. Now every

command, including multiple calls in one LLM response, is sent

through an LLM-based safety filter. Unsafe commands are

blocked and reported to the user.

Figure 2c. Safety check blocking git clean.

Figure 3a. Git commit message.

Figure 2b. Git agent diagram

Figure 3c. Git tree after problem is complete.

Figure 3b. User running the final python file.

Git Log Visualization

The graph shows agent-generated commits and merges; the

execution agent summarizes its actions, and the git agent uses

that context to reason about when to commit, merge, or roll

back, writing meaningful messages for later review.

	Slide 1

