Commit with Reason: Managing Workspace State in Agentic

Scientific Workflows

Warren D. Graham'™ (wdgraham@lanl.gov); Nathan A. DeBardeleben (ndebard@lanl.gov), PhDT

"Coastal Carolina University, Department of Computing Sciences; TLos Alamos National Lab, HPC-DES

URSA Overview

What is URSA?

URSA is a modular agentic ecosystem for automating scientific
and engineering tasks. The core idea is to let small, specialized
agents be combined into a pipeline to address tasks from
running physics simulations to data analysis. This include
separate agents for tasks say as research, planning, code writing
and execution, and version control, among others. By coupling
Large Language Model (LLM) reasoning with domain-specific
tools, URSA aims to accelerate research workflows and make
them more reproducible.

- ™
Problem
\ v,
Planner . Planner Execution
Agent —» Main Steps —> Agent ——>» Sub Steps Agent

A
, Yes

No " More Sub
Steps?

More Main
Steps?

Result

¥

7 ™

Final Answer

\. J
Figure 1a. Example URSA workflow diagram

Execution Agent

Targeted Edits

The original execution agent could only overwrite entire files. |
added an edit_code tool that takes a pair of old and new
strings, applies a single replacement, then renders and prints a
unified diff so the user can see exactly what changed.

Editing file: sum_n.py

Diff Preview
e -16,12 +16,17 @@

def main():
n = 100_000
n = 1_000_000
t0 = time.perf_counter()
total = sum_first _n(n)
total_loop = sum_first_n(n)
t1 = time.perf_counter()
total2 = sum_first_n_builtin(n)
print(f"Match: {total == total2}, loop: {t1 - t@:.6f}s, built-in: {time.perf_counter() - ti1:.6f}s")
total_builtin = sum_first_n_builtin(n)
t2 = time.perf_counter()
total_formula = sum_first_n_formula(n)
print(
f"All match: {total_loop == total_builtin == total_formula}, "
f"loop: {tl1 - t@:.6f}s, built-in: {t2 - t1:.6f}s, formula: {time.perf_counter() - t2:.6f}s"

+ + ++ 4+ + 1

)

if __name__
ipdated: example_integer_sum/sum_n.py

Figure 1b. Unified-diff preview

NIYSH

National Nuclear Security Administration

1% Los Alamos

NATIONAL LABORATORY

Safety Checks

Previously batched run_cmd tool calls in the execution agent
and the new git agent bypassed safety checks. Now every
command, including multiple calls in one LLM response, is sent
through an LLM-based safety filter. Unsafe commands are
blocked and reported to the user.

Command deemed unsafe: git clean -f checkpoint.db checkpoint.db-shm checkpoint.db-wal

Figﬁre -2a. Safety check blocking git clean from deleting untracked files.

Why a Git Agent?

Our existing agents can perform tasks such as research,
planning and modifying our workspace, but without version
control these workspace changes live in a black-box. We need
to capture why each modification happened to determine where
mistakes happen and reverse them automatically or through
user interaction.

g ™
Initialize Git 5 Manage Reflect Summarize
Repository Stage Dutmﬁ
\ J
F ¥
Safety
Check
Y
g ™ g ™
- Tools: | Tools:
Initial Query Command . Command Results
\, J Line Line \, J

Figure 2b. Git agent diagram

Git Agent Architecture

LLM-Guided Git Management

After the execution agent completes a step, the git agent is given
access to the workspace and a summary of the execution
agent’s actions. Using this information and its tool, it can
explore the workspace and make git-related changes.

Git Agent

Initialized empty Git repository in /Users/drewgraham/projects/oppenai/example_integer_sum_git/.git/
git status —--porcelain=
RUNNING: git status —--porcelain=

? checkpoint.db

? checkpoint.db-shm
? checkpoint.db-wal
? sum_time.py

<empty>

git branch —--show-current
RUNNING: git branch —--show-current

main

<empty>

git ls-files —--others —--exclude-standard
RUNNING: git ls-files —-others --exclude-standard

checkpoint.db
checkpoint.db-shm
checkpoint.db-wal
sum_time.py

Figure 2c. Safety check blocking git clean.

Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

fT' COASTAL
L CAROLINA

Q" UNIVERSITY

Structured Commit Messages

The git agent can run any git commands, or other commands
deemed safe and required for version control management,
via its run_cmd tool. When it chooses to create a new commit, it
follows a rough layout for how a detailed commit message
should be worded.

RUNNING: git commit -m "Add formula-based summation and full timing comparison for N=1,000,000

I created (n) using the arithmetic series formula nx(n+1)//2. Updated the main block to:
— Run all three methods (loop, built-in sum, formula) for N=

— Time each execution and print sums and durations.

— Verify that all methods yield the same result.

This commit fulfills the requirement to compare performance across all implementations.”

Add formula-based summation and full timing comparison for N=1,000,000
1 file changed, 37 insertions(+), 8 deletions(-)

<empty>

git checkout main
RUNNING: git checkout main

Figure 3a. Git commit message.

Example Problem

Integer Summation

In our integer sum example we ask the agents to sum the first
N integers using three methods: a for-loop, Python’s built-in
sum, and the constant-time formula and benchmark them.
The execution agent codes and benchmarks them while the git
agent manages the repo; the shown output confirms all three
give the same result.

(oppenai) drewgraham@pn2504264 example_integer_sum_git__20250726_013104 % python3 sum_integers.py
loop_sum: 500000500000, Time elapsed: 0.028970 seconds
builtin_sum: 500000500000, Time elapsed: 0.009229 seconds

formula_sum: 500000500000, Time elapsed: 0.000002 seconds
Assertion passed: All three methods give the same result.
(oppenai) drewgraham@pn2504264 example_integer_sum_git__20250726_013104 % I

Figure 3b. User running the final python file.

Git Log Visualization

The graph shows agent-generated commits and merges; the
execution agent summarizes its actions, and the git agent uses
that context to reason about when to commit, merge, or roll
back, writing meaningful messages for later review.

6e3a2al (main) Merge fast-sum into main

O 048ebea (HEAD — fast-sum) fast-sum: make approx_sum exact override

O 8388c3d STEP4: finalize float approx_sum implementation

O 588fafe (master) initial sum-integr-v3 on fast-sum branch

J1eb47e (feature/steps-destructive-rename) Merge feature/step4-recursive-refactor into main

6916287 (feature/stepd-recursive-refactor) Refactor loop sum to recursive implementation

9a1f022 Merge feature/step3-constant-time-formula into main

2362be0 (feature/step3-constant-time-formula) Add formula_sum and benchmarking

7d40acc Merge feature/step2-builtin-sum into main

182b839 (feature/step2-builtin-sum) Add builtin_sum function and performance
comparison

a70dbcd (feature/step1-baseline-loop) Add loop sum function and baseline timing

Figure 3c. Git tree after problem is complete.




	Slide 1

