
11Managed by Triad National Security, LLC., for the U.S. Department of Energy’s NNSA.

Continuous Delivery of 
HPC Compute 
Infrastructure
Ethan Clark
Nick Jones (Advisor)
Devon Bautista (Advisor)
August 2025

LA-UR-25-28157



2

Minimizing dedicated system time via automation

• Automation is a time-tested method for speeding processes up
• DSTs often have a lot of waiting, which can lead to missed cues and delayed 

progress
• Automation can also help improve reliability by integrating more error 

checking and causing less typos



3

What is dedicated system time?

• Dedicated system time (DST) is when a system is reserved for non-user 
purposes, such as bugfixes, updates, reconfiguration, testing, etc

• A DST can usually last anywhere from an hour to two weeks
• Minimizing the time DSTs take is important to ensuring users get the 

maximum amount of run time possible



4

A normal DST



5

Git

• Git provides several extremely useful features
− Version control
− Centralized repository
− Branches
− Blame (tracking who wrote what)

• Various Git providers (GitLab, Github, etc) also provide extra features such 
as pull/merge requests and deployment pipelines.



6

Pipelines

• Series of stages that execute when a condition is met
• Attached to the event (usually a commit) that spawned them
• Can be run either manually or automatically, and can be stopped partway
• Can be separated into stages with or without additional conditions

− Multiple pipelines can be run at once with no relation



7

Modelling deployment as software

• Scripts set cluster state
• Git stores the scripts
• Git stores the state

• Pipelines run scripts
• Pipelines set state
• Tagging a commit triggers a pipeline
• Tagging a commit sets state



8

Cluster Specs and Configuration - Badger

• 600 Nodes
• OpenCHAMI
• Ansible - Baremetal and VM
• Slurm Job Scheduler
• Stateless nodes

− booted via PXE (TFTP and 
HTTP)

− uses read-only NFS for the root 
filesystem

− Some directories (/home, etc) 
are mounted read-write



10

Testing

Smoke test / Hard Regressions
• OpenCHAMI
• Reboot a single node
• Failed Services

Performance / Soft Regressions
• Benchmarks

− CPU
− Memory
− Filesystems

• Pavilion



11

Pipeline

• Sync boot images – Pull down the boot images from the container image 
repository so nodes can reboot into them

• Update Service State – Reconfigure the head node by executing the 
Ansible playbook to enable the compute nodes to reboot into the new state

• Test various OpenCHAMI API endpoints – Smoke test the ensure that the 
Ansible playbook applied the correct values for the new state

• Reboot a single node into the new state – Another smoke test to ensure 
no hard regressions were introduced by the new state

• Begin draining the job queue on all nodes – Stops new jobs from being 
added in order to reboot each node individually as their queues empty

• Pavilion - Once the entire compute plane is in new state, run tests to detect 
any soft regressions that may have been introduced



12

Results

• Faster
− Runs in 15-30 minutes

• More reliable
− Less Typos
− Better error checking

• Easy reversion
− Rolling back is as easy as going forward

• Better access controls
− Pull requests require review and approval

• Zero* down time



13

Future Work

• A/B testing during reboots
• Green/blue job queues

− Allow for more changes to be made faster
• Better timeout handling
• Better pavilion integration

− JUnit output plugin



14

Questions

Ethan Clark
ethan.clark@trojans.dsu.edu

Nick Jones
njones@lanl.gov

Devon Bautista
devonb@lanl.gov

mailto:ethan.clark@trojans.dsu.edu
mailto:njones@lanl.gov
mailto:devonb@lanl.gov


15



16

Implementation

• The implementation can be split into three primary parts:

• These components are represented in the Git repository, as scripts, 
playbooks, and pipelines

• The Git repository is hosted on a local version of GitLab, with runners for 
linting, image building, and cluster deployment

• The test cluster this was developed with has about 600 nodes and uses 
OpenCHAMI as management software.



17

Configuration

• In this implementation, almost all configuration is done via Ansible, with a 
minority using legacy Bash scripts

• These playbooks and scripts act as a representation of the system state they 
create when executed

• The Git repository storing the scripts contains the version history not only of 
the scripts, but of the cluster state itself

• This is known as Infrastructure as Code, and it has several benefits:



18

Deployment

• GitLab runners manage Continuous Delivery
• Modularization of deployment recipes as pipeline stages
• When a commit is given a tag matching a specific pattern, GitLab will run the 

deployment pipeline, matching the cluster state to the state represented in 
the commit

• If the commit causes a regression, the state can be reverted by retagging an 
old commit with known good state



19

Smoke Test

• In addition to Pavilion, there are a few tests baked into the pipeline for 
testing the state of OpenCHAMI:

• These components are responsible for booting, managing, and configuring 
compute nodes

• Each service runs in a Podman container via SystemD
• Using the OpenCHAMI API, we can get the current state of the services, 

then compare that to the state in the Ansible playbook



20

Testing

• Both hard and soft regressions can cause major issues
• Pavilion integrates with Slurm, which allows for tests to be run in parallel 

both amongst themselves and with existing user jobs
• It is already used internally at LANL (with a wealth of preexisting tests), so 

the only work involved is integrating it into the pipeline.



21

Results

• The pipeline takes 15-30 minutes to fully execute on the test cluster
• It can be started, stopped, and paused at any point during the process.
• Forcing all changes through Git can also allow for more flexible and precise 

access controls on changes, such as requiring review.
• The time to repair after a failure is significantly lower due, as reverting is the 

same procedure as rolling out new state



22

Compute Node Reboot Test



23

Pavilion



24

OpenCHAMI Smoke Tests


	Continuous Delivery of HPC Compute Infrastructure
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24

