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Minimizing dedicated system time via automation

• Automation is a time-tested method for speeding processes up
• DSTs often have a lot of waiting, which can lead to missed cues and delayed 

progress
• Automation can also help improve reliability by integrating more error 

checking and causing less typos
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What is dedicated system time?

• Dedicated system time (DST) is when a system is reserved for non-user 
purposes, such as bugfixes, updates, reconfiguration, testing, etc

• A DST can usually last anywhere from an hour to two weeks
• Minimizing the time DSTs take is important to ensuring users get the 

maximum amount of run time possible
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A normal DST
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Git

• Git provides several extremely useful features
− Version control
− Centralized repository
− Branches
− Blame (tracking who wrote what)

• Various Git providers (GitLab, Github, etc) also provide extra features such 
as pull/merge requests and deployment pipelines.
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Pipelines

• Series of stages that execute when a condition is met
• Attached to the event (usually a commit) that spawned them
• Can be run either manually or automatically, and can be stopped partway
• Can be separated into stages with or without additional conditions

− Multiple pipelines can be run at once with no relation
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Modelling deployment as software

• Scripts set cluster state
• Git stores the scripts
• Git stores the state

• Pipelines run scripts
• Pipelines set state
• Tagging a commit triggers a pipeline
• Tagging a commit sets state
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Cluster Specs and Configuration - Badger

• 600 Nodes
• OpenCHAMI
• Ansible - Baremetal and VM
• Slurm Job Scheduler
• Stateless nodes

− booted via PXE (TFTP and 
HTTP)

− uses read-only NFS for the root 
filesystem

− Some directories (/home, etc) 
are mounted read-write
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Testing

Smoke test / Hard Regressions
• OpenCHAMI
• Reboot a single node
• Failed Services

Performance / Soft Regressions
• Benchmarks

− CPU
− Memory
− Filesystems

• Pavilion
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Pipeline

• Sync boot images – Pull down the boot images from the container image 
repository so nodes can reboot into them

• Update Service State – Reconfigure the head node by executing the 
Ansible playbook to enable the compute nodes to reboot into the new state

• Test various OpenCHAMI API endpoints – Smoke test the ensure that the 
Ansible playbook applied the correct values for the new state

• Reboot a single node into the new state – Another smoke test to ensure 
no hard regressions were introduced by the new state

• Begin draining the job queue on all nodes – Stops new jobs from being 
added in order to reboot each node individually as their queues empty

• Pavilion - Once the entire compute plane is in new state, run tests to detect 
any soft regressions that may have been introduced
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Results

• Faster
− Runs in 15-30 minutes

• More reliable
− Less Typos
− Better error checking

• Easy reversion
− Rolling back is as easy as going forward

• Better access controls
− Pull requests require review and approval

• Zero* down time
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Future Work

• A/B testing during reboots
• Green/blue job queues

− Allow for more changes to be made faster
• Better timeout handling
• Better pavilion integration

− JUnit output plugin
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Questions

Ethan Clark
ethan.clark@trojans.dsu.edu

Nick Jones
njones@lanl.gov

Devon Bautista
devonb@lanl.gov

mailto:ethan.clark@trojans.dsu.edu
mailto:njones@lanl.gov
mailto:devonb@lanl.gov


15



16

Implementation

• The implementation can be split into three primary parts:

• These components are represented in the Git repository, as scripts, 
playbooks, and pipelines

• The Git repository is hosted on a local version of GitLab, with runners for 
linting, image building, and cluster deployment

• The test cluster this was developed with has about 600 nodes and uses 
OpenCHAMI as management software.
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Configuration

• In this implementation, almost all configuration is done via Ansible, with a 
minority using legacy Bash scripts

• These playbooks and scripts act as a representation of the system state they 
create when executed

• The Git repository storing the scripts contains the version history not only of 
the scripts, but of the cluster state itself

• This is known as Infrastructure as Code, and it has several benefits:
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Deployment

• GitLab runners manage Continuous Delivery
• Modularization of deployment recipes as pipeline stages
• When a commit is given a tag matching a specific pattern, GitLab will run the 

deployment pipeline, matching the cluster state to the state represented in 
the commit

• If the commit causes a regression, the state can be reverted by retagging an 
old commit with known good state
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Smoke Test

• In addition to Pavilion, there are a few tests baked into the pipeline for 
testing the state of OpenCHAMI:

• These components are responsible for booting, managing, and configuring 
compute nodes

• Each service runs in a Podman container via SystemD
• Using the OpenCHAMI API, we can get the current state of the services, 

then compare that to the state in the Ansible playbook
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Testing

• Both hard and soft regressions can cause major issues
• Pavilion integrates with Slurm, which allows for tests to be run in parallel 

both amongst themselves and with existing user jobs
• It is already used internally at LANL (with a wealth of preexisting tests), so 

the only work involved is integrating it into the pipeline.
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Results

• The pipeline takes 15-30 minutes to fully execute on the test cluster
• It can be started, stopped, and paused at any point during the process.
• Forcing all changes through Git can also allow for more flexible and precise 

access controls on changes, such as requiring review.
• The time to repair after a failure is significantly lower due, as reverting is the 

same procedure as rolling out new state
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Compute Node Reboot Test
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Pavilion
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OpenCHAMI Smoke Tests
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