
Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

Motivation
TO OPTIMIZE FUNCTIONALITY IN HPC

This project used historical SLURM data from the
Grizzly cluster to explore machine learning methods.
The goal was to predict both the job runtime and
the queue wait time (the time a job waited in a
queue before running). We also used job scheduler
simulation data to look at the queue wait times.

Chart 1. An empirical cumulative distribution showing the
percentage of requested wallclock limit actually used for jobs.

KEY TAKEAWAYS
- ML IS BETTER THAN USERS AT

PREDICTING JOB RUNTIME

- ML IMPROVES ON SYSTEM PREDICTED
QUEUE TIMES

- ADABOOST AND XGBOOST WERE
CONSISTENTLY THE MOST EFFECTIVE
ALGORITHMS

- THE TEMPORAL AND QUEUE PRESSURE
VARIABLES WERE HELPFUL Vertical Spacer Between Sections

Chart 1. Label in 24pt Arial

ß
can be placed in line
with the blue
Principal
Investigator and
Affiliations box.

à

to
view layout guidelines.

*Character spacing can be set
on the

below font name

LA-UR# 24-28283

Are We There Yet?
Predicting the Queue Wait times and Job Runtimes for HPC Jobs

Christin Whitton | Georgia Institute of Technology | HPC-DES
Mentors: Nathan DeBardeleben, Vanessa Job | HPC-DES

RMSE by Data, Target
Variable and Machine

Learning Method

DATA/TARGET VARIABLE

Grizzly 2018
Minutes in

Queue

Grizzly 2022
Minutes in

Queue

Grizzly 2018
Runtime
Minutes

Grizzly 2022
Runtime
Minutes

Machine
Learning
Method

Decision Tree 3185.97 1260.51 284.54 249.19
Random Forest 3207.85 1315.86 275.47 240.76
SVR (Linear) 3605.69 1505.42 280.38 310.46
SVR (RBF) 4417.22 1536.7 284.64 318.69
Adaboost 3104.81 1262.46 277.30 228.01
XGBoost 3132.14 1298.98 272.43 248.63

75% of users use only 15.9% of
their requested wallclock limit

FUTURE WORK
• Explore more data!
• Use job simulation data to track queue wait times when

different job events occur.
• Look further into SVR – why did it perform poorly here?
• Build a user interface with model results.

THE MODELS
• Feature Selection – used visual inspection,

correlation matrices, and then found the ”best”
combination of variables by optimizing models
with Optuna.

• Model Selection – used regression models, with
Root Mean Squared Error (RMSE) as the
performance indicator.

• Model Tuning – used Optuna to tune the
hyperparameters for each method and model.

Chart 2. An empirical cumulative distribution showing the
percentage of the system-predicted queue times the job waited.

Chart 3. Optuna hyperparameter tuning for a decision tree
model, involving 200 models run – this combination of
hyperparameters has many options, which reflects the high
variance of Decision Trees.

Methodology
THE DATA
• A colleague derived variables to reflect the

work in the queue when a job is submitted,
including % of queue utilization. We also extracted
temporal variables.

•

• Since this data is temporal, we divided into
training and testing data chronologically.

Results
The models and their results are listed in the table below.
With RMSE, lower is better. To evaluate results, we
compared the model RMSEs with what the RMSE is with
the user predicted value.
• Grizzly 2018 job runtime: 558.76
• Grizzly 2022 job runtime: 1419.34

Chart 4. Optuna hyperparameter tuning for an Adaboost model –
each point represents a model run. This combination of
hyperparameters shows that the lower learning rate is important,
which makes sense since too high of a contribution for weak
learners could result in overfitting.

learning rate

n
es

tim
at

or
s

20151050 25 30
0

50

100

150

200

250

300 40k

35k

30k

25k

20k

15k

10k

5k

min samples split

m
in

 sa
m

pl
es

 le
af

20

20

15

15

10

10

5

50

5200

4800

4400

4000

3600

3200

