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Motivation
TO OPTIMIZE FUNCTIONALITY IN HPC

This project used historical SLURM data from the 
Grizzly cluster to explore machine learning methods. 
The goal was to predict both the job runtime and 
the queue wait time (the time a job waited in a 
queue before running). We also used job scheduler 
simulation data to look at the queue wait times.

Chart 1. An empirical cumulative distribution showing the 
percentage of requested wallclock limit actually used for jobs. 

KEY TAKEAWAYS
- ML IS BETTER THAN USERS AT 

PREDICTING JOB RUNTIME

- ML IMPROVES ON SYSTEM PREDICTED 
QUEUE TIMES

- ADABOOST AND XGBOOST WERE 
CONSISTENTLY THE MOST EFFECTIVE 
ALGORITHMS

- THE TEMPORAL AND QUEUE PRESSURE 
VARIABLES WERE HELPFUL Vertical Spacer Between Sections
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Are We There Yet? 
Predicting the Queue Wait times and Job Runtimes for HPC Jobs

Christin Whitton | Georgia Institute of Technology |  HPC-DES
Mentors:   Nathan DeBardeleben, Vanessa Job    |  HPC-DES

RMSE by Data, Target 
Variable and Machine 

Learning Method

DATA/TARGET VARIABLE

Grizzly 2018
Minutes in 

Queue

Grizzly 2022
Minutes in 

Queue

Grizzly 2018
Runtime 
Minutes

Grizzly 2022
Runtime 
Minutes

Machine 
Learning 
Method

Decision Tree 3185.97 1260.51 284.54 249.19
Random Forest 3207.85 1315.86 275.47 240.76
SVR (Linear) 3605.69 1505.42 280.38 310.46
SVR (RBF) 4417.22 1536.7 284.64 318.69
Adaboost 3104.81 1262.46 277.30 228.01
XGBoost 3132.14 1298.98 272.43 248.63

75% of users use only 15.9% of 
their requested wallclock limit

FUTURE WORK
• Explore more data!
• Use job simulation data to track queue wait times when 

different job events occur.
• Look further into SVR – why did it perform poorly here?
• Build a user interface with model results.

THE MODELS
• Feature Selection – used visual inspection, 

correlation matrices, and then found the ”best” 
combination of variables by optimizing models 
with Optuna.

• Model Selection – used regression models, with 
Root Mean Squared Error (RMSE) as the 
performance indicator.

• Model Tuning – used Optuna to tune the 
hyperparameters for each method and model.

Chart 2. An empirical cumulative distribution showing the 
percentage of the system-predicted queue times the job waited.

Chart 3. Optuna hyperparameter tuning for a decision tree 
model, involving 200 models run – this combination of 
hyperparameters has many options, which reflects the high 
variance of Decision Trees. 

Methodology
THE DATA
• A colleague derived variables to reflect the 

work in the queue when a job is submitted, 
including % of queue utilization. We also extracted 
temporal variables.

•  

• Since this data is temporal, we divided into 
training and testing data chronologically.

Results
The models and their results are listed in the table below. 
With RMSE, lower is better. To evaluate results, we 
compared the model RMSEs with what the RMSE is with 
the user predicted value.
• Grizzly 2018 job runtime: 558.76
• Grizzly 2022 job runtime: 1419.34

Chart 4. Optuna hyperparameter tuning for an Adaboost model – 
each point represents a model run. This combination of 
hyperparameters shows that the lower learning rate is important, 
which makes sense since too high of a contribution for weak 
learners could result in overfitting.
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