
Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

Figure 3 - Structure of Cluster
The cluster consists of a head node which is responsible for S3 as well as
hosting the VM. This VM is responsible for booting and managing our 9
compute nodes with the use of OpenCHAMI.

Marcos Johnson-Noya, Harvard University; Alana Kihn, Oregon State University; Madison Mejia, New Mexico Institute of Technology | HPC-DO, Supercomputer Institute | Mentors: Travis Cotton, Sakul Koirala, Jim Williams

Background
OpenCHAMI -
The open-source system manager OpenCHAMI aims to
integrate cloud design principles with HPC system
management. It was designed to be a simple, lightweight
alternative to Cray System Management (CSM). Using a
modular approach, OpenCHAMI utilizes microservices that
are intended to be standalone and replaceable, providing
users freedom in configuration.
GitHub Actions -
GitHub Actions is a continuous integration and
continuous delivery (CI/CD) platform that is built into
GitHub. It allows developers to build, test, and deploy code
all from within a repository.
Hurl -
Hurl is a HTTP request command line tool, useful for
asserting if certain HTTP requests are returning the
expected response.

The Pipeline
Pipeline Workflow -
As depicted in Figure 2, the pipeline is triggered when OpenCHAMI developers
push to the remote deployment-recipes repository. The pipeline then begins by
following the OpenCHAMI quickstart guide. The steps within the quickstart
guide configure the secrets file, system name, access token and certificates
needed to start the OpenCHAMI services. Once the OpenCHAMI services are
brought up, our pipeline continues by running endpoint checks to ensure the
services are running or have exited successfully. When the services are
confirmed to be up and running, all files within the Hurl test directories are
executed. The Hurl test directories are designed to make it easy for developers
to add or remove tests as needed.

Challenges
Virtual Machine Reboots After Each Job
Since the virtual machine reboots after each job completes,
all steps of the runner have to occur in the same workflow
file.
OpenCHAMI Lacks Cloud-init capabilities -
The post-boot configuration manager Cloud-init is not
supported yet, so we were unable to add users to our
compute nodes within the pipeline. As a result of running
as an unprivileged user, it was impossible to run SLURM
jobs on the compute nodes.
Finding a Fitting Testing Framework -
We were unsuccessful in finding a testing framework that
automatically managed the order of test execution.

LA-UR-24-28351

Automated OpenCHAMI Integration Testing and Cluster Deployment

Figure 2 - Workflow of GitHub Pipeline

Methods
Ephemeral Runner Environment -
The key to implementing our self-hosted, ephemeral
runner was creating systemd services. We developed a
systemd service on our head node that continuously
checks for a booted virtual machine (VM) and then re-
creates the VM once it is no longer running. This
provides a clean virtual environment for each GitHub
Actions runner that is deployed.
Establishing systemd on the VM -
Our second systemd service is located on our VM. This
service is in charge of deploying our self-hosted, GitHub
runner. It utilizes a GitHub app token to register a
runner on our GitHub repository. This token is received
from a bash script, and it’s subsequently passed into the
configuration arguments of the GitHub actions. This
systemd service is in charge of passing all needed
command line arguments to the runner, ensuring it’s
started with the --ephemeral tag and assigned a name
as well. The runner itself will remain in an idle state until
a job has been sent to it from the remote GitHub
repository. After the completion of the job, the runner
automatically unregisters itself.
Completing the Life Cycle -
The same systemd service on the VM is then in charge
of self powering off once the GitHub runner has
terminated. It is at this point that the head node creates a
new virtual machine and the process restarts. This
ephemeral life cycle is depicted in Figure 1.

Conclusion
Time Saved -
Our full pipeline executes on a 10-node cluster in
about 10 minutes! This automation greatly accelerates
the time is takes to develop, test, and deploy
OpenCHAMI code.

The pipeline then populates the State Management Database (SMD) and the
Boot Script Service (BSS). Both the SMD and the BSS are populated using
YAML configuration files and the OpenCHAMI Command Line Interface. After
it is confirmed that the BSS and SMD have been populated successfully, the
compute nodes are power cycled using Powerman. The pipeline waits until at
least 70% of the nodes have powered on successfully before continuing. The
last step of the pipeline is confirming that the nodes have successfully booted.
This is tested with the use of the Clush uptime command. Similar to the power
cycle step, the pipeline checks that at least 70% of the compute nodes have
successfully booted before completing successfully.

Figure 1 - Life Cycle of our Self-Hosted, Ephemeral GitHub Runner

OpenCHAMI
Quickstart GitHub

