
Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

Effective Database Design for Efficient Workflow Orchestration
Author: Kabir Vats | UC San Diego Jacobs School of Engineering Department of Electrical and Computer Engineering
Mentors: Rusty Davis | Los Alamos National Lab, HPC-DES and Andres Quan | Los Alamos National Lab, CCS-7

Introduction
INTRO TO BUILD AND EXECUTION ENVIRONMENT (BEE)
“BEE is a workflow orchestration system designed to build
containerized HPC applications and orchestrate workflows
across HPC and cloud systems” (BEE). To orchestrate multi-
step workflows, the workflow’s steps are interpolated into
dependencies between tasks. BEE uses a Neo4j Graph
Database to track satisfaction of dependencies.

Figure 3. “Cat Grep Tar” workflow. This
workflow has simpler tasks with a more

complex dependency structure

Figure 1. Graph Database
during the “Cat Grep Tar”
Workflow. The various
nodes store information for
each of the tasks
(highlighted in red) to use
during execution. The
dependencies between
tasks are also boldened,
and the blue ‘Metadata’
nodes track a task’s state.
By using a graph database
to track workflow state, BEE
knows when it can execute
tasks after a dependency is
satisfied.

CHANGE TO THE DATABASE DESIGN
Prior to this project, BEE would launch an instance of Neo4j for
every submitted workflow. At scale, multiple workflows’ Neo4j
instances running on the same BEE client would be using
significantly more system resources which would add to BEE’s
overhead in workflow orchestration. The solution needed to use
Neo4j database to incorporate all workflows associated with a
BEE instance. The big-picture database change is the insertion
of a ‘Head’ node that connects to each workflow node.

Efficiency Study
METHODS
To test the effectiveness of running one database as opposed to
launching multiple, a performance study was performed on
LANL’s Darwin Cluster’s Skylake-Platinum partition. The Neo4j
process(es)’ memory usage (RSS) was recorded over time.
First, the sample workflows “Cat Grep Tar” and “CLAMR” were
run in isolation. Then, two instances of “CLAMR and three
instances of “Cat-Grep-Tar” were run simultaneously (Five
concurrent workflows total).

Results Analysis
CONCLUSION
The results of the experiment signify that the change from using
one Neo4j database per workflow to using one Neo4j database
regardless of the number of workflows resulted in significantly
more efficient memory usage from Neo4j. The memory efficiency
increase for the new design is particularly pronounced during
concurrent execution of multiple workflows, appearing to
consume five times less memory during the execution of five
workflows. From these results, it appears likely that this change
will greatly improve BEE’s efficiency, especially during large
scale deployments.

Another conclusion that can be drawn from this study is that the
execution of BEE workflows while using a singular database did
not result in any debilitating database query errors, meaning
BEE’s functionality as a workflow orchestration software was not
reduced at all by the changes made.

DISCUSSION
The likely reason the singular instance consumed less memory
during even the “CLAMR” and “Cat-Grep-Tar” runs in isolation is
likely due to a change in the Neo4j boot method, where the new
solution boots Neo4j “Console” which runs in the foreground
rather than ‘Start” which runs in the background in order to
access the Neo4j status as a subprocess. However, this
distinction is not enough to explain the discrepancy seen during
the concurrent workflow run, where the new design shows
significantly lower RAM usage. The asymptotic RAM usage with
respect to workflows is linear for both implementations O(n), but
the new design shows a significantly smaller increase in Neo4j’s
RAM usage per workflow, making it far more desirable to be run
on HPC systems.

Further development of this new design aims to incorporate the
ability to archive the state of a particular workflow within the
Neo4j database. If HPC environments experience outages
during a multi-day workflow run, it is important for BEE to be able
to resume from its last state, including its most recent Graph
Database state. These changes will likely incorporate a query
into the database for the workflow’s state, which will be saved
within the workflow’s working directory.

Future studies on the efficiency of this new design should
analyze the differences between the runtime of both designs
during the execution of concurrent workflows. Neo4j’s driver
operates on a single thread to avoid race conditions, so many
read and write operations could lead to an increase in runtime for
a workflow.

Memory usage was higher during all experiments (“Cat Grep
Tar”, “CLAMR”, and five concurrent workflows) for the old
database design. The difference in memory is especially
apparent for the concurrent workflows run, which shows multiple
step-up increments of the memory usage after the creation of
each instance of Neo4j database. At its max usage, the old
Neo4j design was using approximately 5000 MB of RAM to the
new design’s 1000 MB, revealing the memory-efficiency of
restricting the Neo4j database to a single instance.

�

to
view layout guidelines.

*Character spacing can be set
on the

below font name

LA-UR-24-28101

Figure 4. “CLAMR” workflow. This
workflow has more complex tasks but

has a simple dependency structure

Figure 6. Comparison of memory usage over
time from Neo4j during the “CLAMR” workflow

Figure 5. Comparison of memory usage over time
from Neo4j during the “Cat Grep Tar” workflow

RESULTS

Figure 7.
Comparison of
memory usage
over time from
Neo4j for two

instances of the
“CLAMR”

workflow and three
instances of the
“Cat-Grep-Tar”

workflow.

Figure 2. New
design of the graph
database during the
execution of three

“Cat Grep Tar”
workflows and two

“CLAMR” workflows
(See Performance

Study). The
highlighted pink

nodes and edges
show the added
‘Head’ node that
connects to each

workflow.

To execute this change, the Neo4j Cypher queries were changed
to ensure that each query would only impact one workflow,
eliminating the chance of workflows interfering with each other.
Many launches and connections to the graph database were
also refactored to ensure that workflows did not interfere with
each other.

References
“BEE: Build and Execution Environment.” GitHub, Los Alamos National Laboratory, github.com/lanl/BEE. Accessed 1 Aug. 2024.

