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Star-Product Networks
REPRESENTING NETWORKS AS GRAPHS
A network can be represented by a set of nodes connected by another 
set of wires. This can be formalized by the mathematical structure of a 
graph (𝑽, 𝑬), which is a set of vertices 𝑉 combined with a set of edges 
𝐸 between them. Instead of constructing a big graph from scratch, we 
can take two smaller graphs and combine them by using a graph 
product. For this presentation, we are interested in the star product.

CARTESIAN AND STAR PRODUCT NETWORKS
Given two graphs, which we call the structure graph 𝑮𝒔 = (𝑽𝒔, 𝑬𝒔) and 
the supernode 𝑮𝒏 = (𝑽𝒏, 𝑬𝒏), we define their Cartesian product 
𝑮𝒔⨉ 𝑮𝒏 to be the graph with vertex set 𝑉𝑠⨉ 𝑉𝑛 and edge set

{((𝑥, 𝑦1), (𝑥, 𝑦2)) | 𝑥 ∈ 𝑉𝑠, (𝑦1, 𝑦2) ∈ 𝐸𝑛}
⋃ {((𝑥1, 𝑦), (𝑥2, 𝑦)) | (𝑥1, 𝑥2) ∈ 𝐸𝑠, 𝑦 ∈ 𝑉𝑛}.

Intuitively, we place a copy of 𝐺𝑛 at each vertex of 𝑉𝑠 (each connected 
by the edges in 𝐸𝑛) and then connect these copies by replacing each 
edge of 𝐸𝑠 with a set of edges connecting corresponding vertices in 𝑉𝑛. 
We can similarly construct the star product by placing a copy of 𝐺𝑛 at 
each vertex of 𝑉𝑠 and then connect copies {𝑥1} ⨉ 𝑉𝑛 and {𝑥2} ⨉ 𝑉𝑛 by 
using an arbitrary bijection between the vertices 𝑓 !!,!" : 𝑉𝑛 → 𝑉𝑛.

Formally, the star product 𝑮𝒔 ∗ 𝑮𝒏 is defined as the graph with 
vertex set 𝑉𝑠⨉ 𝑉𝑛 and edge set 

{((𝑥, 𝑦1), (𝑥, 𝑦2)) | 𝑥 ∈ 𝑉𝑠, (𝑦1, 𝑦2) ∈ 𝐸𝑛} ⋃
{((𝑥1, 𝑦), (𝑥2, 𝑓(!!,!")(𝑦))) | (𝑥1, 𝑥2) ∈ 𝐸𝑠, 𝑦 ∈ 𝑉𝑛}. 

See Figure 1 for an example of this construction.

Figure 2. The complete graph 𝐾4 with its two EDSTs on the right.

PolarFly is a mathematically designed network of diameter 2 which 
asymptotically reaches the Moore maximum bound on the number of 
nodes on a network with fixed degree and diameter. By using PolarFly 
as its structure graph, PolarStar currently achieves the largest known 
diameter-3 network topologies for almost all radixes and has been 
submitted for this year’s R&D 100. Since star products are 
generalizations of Cartesian networks, they share some properties with 
Cartesian networks, but improved, such as modular structure, small 
diameter, flexibility in design, and as we will discuss, parallelism.

CONSTRUCTING EDSTs

If the structure graph 𝐺𝑠 has 𝑡𝑠 EDSTs and the structure graph 𝐺𝑛 has 𝑡𝑛
EDSTs, we can construct 𝒕𝒔 + 𝒕𝒏 − 𝟐 EDSTs without any 
restrictions, and we go over these constructions now. Let 𝑋1, 𝑋2, … , 𝑋%$
be the set of EDSTs on 𝐺𝑠 and let 𝑌&, 𝑌2, … , 𝑌%% be the set of EDSTs on 
𝐺𝑛. For our first construction type, we will set aside 𝑌& and maximize the 
use of 𝑋' on the other vertices, where 𝑖 ≠ 1. Varying across 𝑖, this 
yields 𝑡𝑠 − 1 EDSTs. Now we describe the construction:

Construction 1
1. Connect one supernode using 𝑌!.
2. Connect all other supernodes by using |𝑉𝑛| copies of the tree 
𝑋". Formally, if 𝑜 is the root of the directed tree 𝑋", then draw 
in all paths of the form {(𝑜, 𝑣), (𝑥1, 𝑓((,!!)(𝑣)), … }.

A visual representation is given in Figure 3.

EXISTING STAR PRODUCT NETWORK IMPLEMENTATIONS

Turns out a lot of existing network topologies are star products! The 
Mesh, Torus, and HyperX topologies are all Cartesian products, and 
more generally, the Slim Fly, BundleFly, and Chimera networks are star 
products, the latter of which was used in the DWave 2000Q. Recently, 
our team has constructed a new star product PolarStar, which takes the 
star product of PolarFly with the Paley graph or our own IQ graph. 

Edge-Disjoint Spanning Trees
WHAT ARE EDSTs AND WHY ARE THEY IMPORTANT?

An important question about any network is: how many disjoint paths 
can one take to travel between every node? One obvious application of 
this question is parallelism: if there are multiple paths available to travel 
between nodes on a network, one can maximize the number of 
messages that can be sent on the network at the same time. Moreover, 
the network’s fault tolerance and bandwidth are improved at the same 
time. We formally define disjoint paths as edge-disjoint spanning 
trees (EDSTs), which are edge-disjoint if they do not share any edge 
with each other and spanning trees if they connect all the vertices 
without forming any cycles. We now formalize our research question as: 

Given any structure graph 𝑮𝒔 and supernode 𝑮𝒏 (both connected 
and simple), how many EDSTs can we find on their star product?

Additional Analysis
ADDITIONAL CONSTRUCTIONS

If the structure graph 𝐺𝑠 has 𝑟𝑠 spare edges (not used in the EDSTs) 
and 𝑟𝑠 ≥ 𝑡𝑠, then we can get one more spanning tree (and similarly for 
the supernode 𝐺𝑛). When 𝑟𝑠 = 𝑡𝑠 and 𝑟𝑛 = 𝑡𝑛, we get maximality.

DEPTH ANALYSIS

In addition to maximizing the number of EDSTs, we can lower their 
depth by carefully choosing our star product edges.

Similarly, for our second construction, we set aside 𝑋1 and maximize 
the use of 𝑌' on all supernodes, where 𝑖 ≠ 1, yielding 𝑡𝑛 − 1 EDSTs:

Construction 2
1. Connect all supernodes using 𝑌" .
2. Fix 𝑣 ∈ 𝑉𝑛. Connect the supernodes by using the directed 

tree 𝑋𝑖 to connect all (𝑥2, 𝑣) with their ancestors, more 
formally, with the edges (𝑥!, 𝑓(!!,!")

#! 𝑣 , (𝑥$, 𝑣) .

A visual representation of the above is given in Figure 3.

Figure 3. A visual representation of Constructions 1 (left) and 2 (right).
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Figure 1. A quick demonstration of the Cartesian product and the star product.

Figure 4. A visual representation of additional constructions possible.

Figure 5. Construction 2 compared with a modified tree with lower depth (right).
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